University of Richmond
UR Scholarship Repository

Honors Theses Student Research

4-7-2004

Securing distributed computations : in search of
reliable [arge-scale compute power and refreshed
redundancy

Edward P. Kenney

Follow this and additional works at: http://scholarship.richmond.edu/honors-theses

Recommended Citation

Kenney, Edward P,, "Securing distributed computations : in search of reliable large-scale compute power and refreshed redundancy”
(2004). Honors Theses. Paper 596.

This Thesis is brought to you for free and open access by the Student Research at UR Scholarship Repository. It has been accepted for inclusion in
Honors Theses by an authorized administrator of UR Scholarship Repository. For more information, please contact

scholarshiprepository@richmond.edu.

http://scholarship.richmond.edu?utm_source=scholarship.richmond.edu%2Fhonors-theses%2F596&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarship.richmond.edu/honors-theses?utm_source=scholarship.richmond.edu%2Fhonors-theses%2F596&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarship.richmond.edu/student-research?utm_source=scholarship.richmond.edu%2Fhonors-theses%2F596&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarship.richmond.edu/honors-theses?utm_source=scholarship.richmond.edu%2Fhonors-theses%2F596&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarship.richmond.edu/honors-theses/596?utm_source=scholarship.richmond.edu%2Fhonors-theses%2F596&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarshiprepository@richmond.edu

MaT
UNIVERSITY OF RICHMOND L

)MIWNM)WNWHUM/MW/NWHININHINW , en

00943 1858

Securing Distributed Computations

In Search of Reliable Large-Scale Compute Power and Refreshed Redundancy

University of Richmond, Department of Computer Science
Edward P. Kenney ‘
D‘r. Douglas Szajda, Advisor
April 7,2004

Abstract: Distributed computations allow computers connected via an inte-
rnetwork To combine their computational power in order to achieve solutions
to otherwise intractable problems. These computations harness unused
processor power aggregated over thousands of computers, providing a
tremendously valuable resource. Unfortunately security in this setting is a

difficult matter. Code must be executed in potentially hostile environments,

and participant identity is an intangible entity. In addition, consideration of
application specifics must be of paramount concern. This paper presents a

framework for evaluating the security of these computations and offers an

updated approach to redundancy that can significantly impact the efficacy of
distributed computation security mechanisms.

This paper is part of the requirements for the honors program in computer science. The
signatures below, by the advisor, a departmental reader, and a representative of the depart-
mental honors committee, demonstrate that Edward Kenney has met all the requirements
necessary to receive honors in computer science.

(advisor)

Lo

(honors committee representative)

1 Introduction

The Internet may be the single largest technological advance or significant societal change in the
last century. Not only does it allow access to more information than any human could ever hope to
digest, but it produces the potential of having millions of computers combining their computational
forces for the betterment of a single cause.. Ti is is the fundamental goal of distributed computing.
A distributed system is defined to be a network of machines with some degree of centralized
direction. In a distributed computational system each machine will accept computational tasks from
a supervisor in a master-slave relationship. Thus the compute power of many machines can be
combined to solve difficult problems. A single user is potentially given the power of thousands of
machines at his finger tips and the sum capability of the millions of computers whose processors sit

idle much of the time is better utilized.

The potential is tremendous, but the realization of this potential is problematic. In an increasingly
interconnected and technology savvy world, security becomes ever more important. There are,
however, fundamental problems with securing mobile elements. Supervisors of a distributed
computation must use results produced by code executed by a potentially malicious participant.
Further complicating these matters, it is difficult to convincingly identify the human identity of an
online user. The full potential of the écientiﬁc advance that is the Internet remains unrealized due to
these limitations and hurdles. A problematic absence in the current literature is a set of common,
assumptions about distributed computations, the security thereof, and the adversaries that must be
considered. This paper describes a viable set of assumptions about the structure of a distn'Buted
computation and the nature of its security. It presents a novel set of implementations for

redundancy that can significantly improve upon the security of a system.

Section 2 provides a distributed computation model. Section 3 provides currently implemented
examples of distributed computations. Section 4 breaks down the fundamental characteristics of
these computaitons and their platforms, and provides a rough taxonomy that may act as a guide in
considering the security mechanisms that are needed and achievable for a given application.
Section 5 addresses implementation issues. Section 6 details redundancy schemes that provide
enhanced resistance to redundancy. Section 7 presents analysis of a simulation modeling the

implementation of the method presented in Section 6. Section 8 details the current state of mobile

agents and the relationship of that subject area to distributed computation research. It also describes

possible future research. Section 9 is the conclusion.
2 Distributed Computation — The Model

As previously mentioned, the Internet offers tremendous potential in terms of aggregate compute
power. This can only be achieved, however, if the issues produced by a hostile, interconnected
environment can be overcome. This section describes the computations under consideration: the
problem domains applicable to distributed computing platforms, possible platform infrastructures,
assumptions surrounding the typical adversary, and the security characteristics desired in such a

computation. General terminology is introduced throughout.

Distributed computations are controlled by a central server (the machine), or supervisor (the human
in charge). The administrator recruits participants either by financial reward or by an appeal for
cooperation in a non-commercial endeavor. When an Internet user decides to become involved in a
computétion, he downloads a screensaver or applet to his machine. This allows the computation to
be executed during processor ‘down-time”, reducing the number of un-used processor cycles and
contributing to the overall compute power of the system. With this setup completed, tasks can be
assigned and completed on a dynamic basis. Tasks will necessarily be able to be completed by the
average, “normal”, personal computer in a few hours of processor time. Due to the fluctuating
nature of that computer’s use, task completion times will vary among the various participants in a
computation, but all tasks will normally have a time-out mechanism that triggers reallocation of the

task.

A job is defined as the assignment and distribution of tasks, their completion by the various
‘ participants, their collection by the central server, and ultimately the production of a result via the
combination of many returned solutions. A fask is defined as the set of operations assigned to a
participant. Operation in this context constitutes the smallest unit of job execution. For example, in
a DES Encryption Key search, the job would be equivalent to finding the correct encryption key,
each task would consist of a subspace of the total key-space, and operations would consist of

checking a single key.

It is important to define the security characteristics desired of these computations. In the context of

a distributed computation we are looking for guarantees of the following:

1) Data Secrecy 4) Cheating Resistance
2) Participant Authenticity 5) Disruption Resistance
3) Data Integrity 6) Data Confidentiality

Assume that the central control server is protected via a PKI implementation. A sophisticated
saboteur who is capable of compromising saic:server has the ability to intercept all messages from
participant to administrator, mirroring a typicai'cryptographic scenario. Although this is a

sophistic ated attack, methods of protection against it are well known, and the compromise of those
mechanisms is beyond the scope of this paper. The adversary is therefore assumed to be incapable
of such work. A public key cryptographic protocol, including digital signatures, can assure data
secrecy, participant authenticity, and data integrity. Further definition is necessary here. Data
secrecy in this context refers to keeping data secret as it is transmitted from supervisor to
participant. Participant authenticity is more specifically “username” authenticity, as it is impossible
to reliably bind human identity to virtual identity. This will be discussed at length in section 5. See
Rivest, Shamir, and Adleman [1] for further details on public key cryptographic protocols and their
capabilities. This having been established, it is thus necessary to focus on cheating resistance,
disruption resistance, and data confidentiality when considering the effectiveness of a proposed

security mechanism, and it is these characte ristics that will be the focus of this paper.
3 Examples

Distributed computation can be used to solve a large and varied assortment of computationally

challenging problems. Several are briefly described here.

Exhaustive linear regression is a data-fitting technique that matches experimental data to a
function. Given an experimental dataset and a necessarily finite set of possible fit-functions, which
function provides the best match, or smallest cumulative discrepancy between values predicted by
the function and actual data? This question is addressed in a brute force manner, by testing all
possible fits (in practice this is accomplished by varying the coefficients of an nrdimensional
function), making it an apt application of distributed computing. For further discussion of

regression analysis see Draper and Smith [12].

Monte Carlo simulation, as a general class of problem, is also particularly well situated to take
advantage of a distributed computation. By utilizing a simulation of a realworld situation,
combined with randomization, this stochastic process can’achieve results to problems that prove
intractable to analytic techniques. Monte Carlo simulation is being used to achieve solutions in
such areas as financial modeling, climate prediction, and graphics rendering. The need to complete
computations on large numbers of randomly generated numbers makes these computations ideal

for distributed computing,.

SETI@home [5] is one of the most well-known distributed computations in current operation.
Massive compute power is needed to analyze the terabytes of data on incoming signals from space
collected by the project. If a signal indicates evidence of extraterrestrial life the supervisor is
notified.. Absent the dedication of a supercomputer(s) to the project, the analysis would be
completely intractable, yet SETI, which has millions of participants is succeeding in analyzing

huge amounts of information from space in the search for extraterrestrial intelligence.

Folding is the process by which a protein, consisting of a string of amino acids, takes on the
physical configuration that gives it biochemical functionality [9] A protein's folded structure is
predetermined by it's amino-acidic composition, however determining this configuration a priori is
quite difficult. Furthermore complete atomic simulation of the protein folding process is highly
valuable to molecular biologists, but hindered by technical challenges. Proteins fold quite rapidly
on a human scale, on the order of a microsecond in fact. Computational intensity, however, limits
simulation to just 1 nanosecond per CPU-day [8]. Thus simulation of a full protein fold becomes an
intractable problem via conventional means, warranting the use of a distributed computing

platform.

FOLDING@home [10], a distributed computing project run by the Pande Group at Stanford
University, seeks to parallelize the folding process by coupling molecular dynamics simulations via
a method termed "ensemble dynamics" [6]. The ensemble dynamics method creates many
independent folding series, where each series consists of a large number of trials. Here 'trial’
denotes a simulation with a specific set of atomic location coordinates and a random set of
thermodynamic forces acting upon those atoms. The trials within a series are distributed over
thousands of participants , have the same initial set of location coordinates, and are run in parallel.

This is a non-SIMD style computation that can run in parallel with novel approaches.

Also in the realm of molecular biology is the problem of sequence matching. This application is a
prime example of an optimization problem. For DNA sequence comparison, for instance, given the
Smith-Waterman local sequence comparison [14] for determining ‘likeness” of DNA sequences,
distributed computation allows each participant to evaluate a set of possible matches in order to

determine properties of a DNA sequence’s evolution,

Finally, distributed computation is an effecti ¢ means of addressing various instantiations of the
traveling salesperson problem, and is an excellent option for “needle in a haystack”-like searches

such as computation of a DES Encryption Key and the Great Internet Mersenne Prime Search [13].

4 Application Characteristics — A Rough Taxonomy

Given a specific distributed computation, it is useful to be able to classify that problem in terms of
its various characteristics. This section provides a model for the computing platform, the problem
domain, and the adversary, and can serve as a guide in terms of what security mechanisms are

possible in a given context.

4.1 Model of the Platform

Platform dictates such factors as the incentive structures of the participants, trust relationships,
expected privacy of data, resource ownership, and the anonymity and privacy of participants. These
elements can affect the security threats faced, dictate the security options available, and determine
the potential efficacy of those measures. The computing platform consists of a trusted central
control server coordinating a large number of personal computers in a * master-slave" relationship.
These worker nodes, or participants are assigned tasks by the central control server. The worker
nodes then complete the specified tasks and return significant results. “Significant” is necessarily
context-dependent, but this is important as it allows for computation tuning, or changes in the
results desired. Participants may be required to periodically send progress reports to the server, and
there will always be a limit on the time permitted to complete a task, though this time limit may be
as long as a few days. There are several platforms possible for this type of computation: enterprise,
Internet, and hybrid. This differentiation is necessary because of significant differences in security

issues arising from variations in the ~"demographics” of the pool of participants.

4.1.1 — Enterprise Computations: An enterprise computation denotes a computation completed
with the resources provided by a single company or institution. An example might be the donation
of all computers on a University network to a distributed computation. The key result of this setup
is that there is a strong likelihood that participants in this setting could know one another.
Furthermore, a network administrator exercises near-complete control over her network resources.
Thus collusion becomes a significant problem. An administrator could control muitiple participants
to achieve this, or multiple human identities 't presenting computation participants could collude in

an attack scenario.

4.1.2 - Internet Computations: An Internet computation utilizes the resources of potentially
every computer on the Internet. Typically a computation supervisor advertises for his/her
computation via some sort of awards system, financial or otherwise, or by appealing to the Internet
population on the basis of helping to further a good cause. In this setting it is less likely that

participants will know one another.

4,1.3 — Hybrid Computations: Hybrid computations are just that: computations in which
organizations, companies, or institutions donate large numbers of computers to a computation, but
that computation’s participant base is filled out with the addition of other Internet users. This
setting suffers less from the threat of collusion than, say enterprise computations, but more so than

Internet computations.

4.2 Model of the Adversary

Having considered both the computational platform and the problem domain, it is important also to
take into account a model of the adversary. It is important to assume that an adversary is both
intelligent and goal oriented. He possesses significant technical skills, including the ability to
efficiently decompile, analyze, and modify task or execution environment code. An adversary may
attempt to cheat, by which it is meant that he tries to obtain credit for work that he has not
performed, or he may try to disrupt the computation by intentionally returning incorrect results or
failing to return significant results. In this model, a disrupting adversary, or saboteur is only
deterred by a significant penalty, with severity on the order of loss of employment or criminal
penalties. This observation is justified due to the lack of economic gain via disruption of a
computation. A cheater, in comparison, is motivated by gaining credit for work not performed, and

therefore is motivated by loss of credit.

Elaboration upon the two classes of opponent is needed. The first is the cheater, the second, the
saboteur. We will call our cheater Calvin, and our saboteur Stanley. First consider Calvin. Calvin,
as a cheater, is motivated by a desire to gain credit for work not actually performed. This may
mean that he returns a random response without backing it with any work. We will assume that
Calvin's intelligence at the very least allows him to make his response make sense in the context of
the problem. Although blacklisting, as discussed later, is ineffective, a cheater such as Calvin can

still be sanctioned via revocation of credit prex. ously earned.

Stanley is a very different opponent. As a saboteur, his goal remains only to disrupt the

computation. This is the adversary from whom might come a false positive. In fact, as discussed
below, some applications might be especially susceptible to this type of attack. Reprimand against
Stanley is more difficult affair. It must be assumed that he is not performing any illegal action, but
rather just being dishonest. This then eliminates the option of severe punishment, such as criminal
prosecution, A supervisor's only course of action, then, is to prevent Stanley's efforts from

successfully disrupting the computation.

Consider two possible cheating strategies. The firsts shall be called unanimous denial. In this case,
Calvin returns a negative response in all cases. In other words, he denies having received a
significant result as a matter of policy. There are a number of observations to be made here.
Suppose that there are s total significant results in the search space, and that each participant is
given a total of g data elements to evaluate. Then the probability that Calvin will receive a
significant result within his test space is gls. However, recognize that should Calvin return a
negative response when in fact his test-space included the correct key, the administrator will find
out. A standard procedure would be to re-distribute the key-space to another set of participants.
Assume that this group does not contain a cheater, and upon completion of the computation, the
administrator will know that Calvin cheated, assuming that record is kept of the distribution of
tasks. Thus Calvin's probability of being caught is also gls. The key observation here is that in an
easily checkable computation such as cryptographic key search, a cheater will always be caught.

His probability of being caught is equivalent to his probability of receiving a significant answer.

Another strategy for Calvin might be to compute half of the assigned task. At the completion of
half of the work then, Calvin could respond with a negative answer if nothing has been found. This
reduces his chance of being caught, but also forces him to do more work. Thus he is cheating less,

but risking less. It should also be apparent, at this point, that the first strategy might be an excellent

option for Stanley. In the case that a saboteur is given the test-space containing a significant
answer, he can purposely fail to return the result. Because this will force the entire computation to
be re-computed, Stanley will have achieved disruption. Research is needed on what attack
strategies are actually launched on distributed computations. It is clear however, that in an Internet

computation Stanley can go about his saboteur activities in relative comfort in many scenarios.

4.3 Model of the Problem Domain

There are two key characteristics of the problem domain in a distributed computation: the degree to
which it can be parallelized and its granularity. Distributed computing platforms are capable of
solving any problem that can be run in parallel. Often this will mean an SIMD-style computation.
Problems outside this classification can often be parallelized via new techniques, as is the case with
protein folding. The key characteristic is that the computation, or job, is easily divided into tasks
small enough to be solved by a PC in a ““reasonable” amount of ‘time. "Reasonable" will typically

be defined on the order of several hours of CPU time.

The individual tasks are independent of one another, and consist of one or nmore operations, the
smallest independent subunit of job execution. The granularity of a job is determined largely by the
characteristics of the associated operations. Some jobs require tasks that consist of relatively few
operations. Each operétion may then take a relatively long time to complete, and the granularity is
therefore quite large. Other jobs require tasks consisting of a large number of shorter operations.
The associated granularity here is quite small. Take, for example, a prime search. Here an operation
is defined as determining the primality of a single candidate. This operation is relatively long, and a
task would therefore consist of a few hundred operations. Consider, however, a search for a DES
encryption key. Here an operation is defined as the test of a single candidate key. The operation is
much smaller, and therefore the corresponding task can consist of hundreds of thousands of

operations.

One key characteristic of a problem is whether or not it consists of a series of sequential jobs or
not. Protein folding and GIMPS, as mentioned earlier, are sequential problems. Cryptographic key
searches, by comparison, are not. A sequential problem magnifies the darhage caused by a
saboteur's fake positive, since further tasks are at minimum partia lly dependent upon that result and
are thus significantly thrown off. The results returned by participants in such a computation are
typically more difficult to verify as well. Thus not only are false positives more damaging, but they

are more difficult to prevent. Lastly, sequential computations often require special techniques in

order to run tasks in parallel and take advantage of a distributed computing platform, adding

complexity to the task at hand.

Many problems can be grouped under the heading “Inversion of a One-Way Function”. These
problems include public key searches. The critical observation here is that these functions are
eminently checkable. One-Way functions normally carry the property that, given the right
information, the one-way operation is easy to conduct. Thus when a result is returned, the
supervisor of the computation can easily verify the correctness of the result. This essentially
nullifies the efforts of the cheater, since each result returned can be verified at acceptable cost to
the supervisor of the computation. However, given that the supervisor of such a computation would
be tempted to check each result’s veracity, an opportunity is created for a saboteur. Indeed, this
class of problem becomes susceptible to a denial of service attack. Because each result can be
verified, a saboteur can affect the supervisor by returning a large number of significant results.
They will be verified as incorrect, but the supervisor of the computation is forced to check the
results in order to realize this. When collusion is entered into the equation, this attack can be very
effective. Consider also that often computations in this class will have a single correct result. This
opens the computation to a significant disadvantage in that an adversary, specifically a saboteur,
can simply withhold the correct answer. This forces the supervisor of the computation to r_esend the
job, effectively doubling its cost. Sure, should the correct result be identified on the second
transmission the saboteur could be identified from the first transmission, but recall that there are

really no viable means of punishment for a saboteur.

Another class of problems addresses optimization issues. DNA sequence comparison is a prime
example of such a problem. These applications adapt well to distributed computing. Optimization
requires some sort of “goodness” scoring technique. This means that these applications are
inherently very tunable, allowing the supervisor of the computation tremendous flexibility in terms
of which results are returned. This allows the supervisor to vary the closeness with which he
monitors his participants. Furthermore, there are often several solutions that will come close to the
desired result. Thus if the supervisor is willing to pay the cost of a limited amount of post-
processing, he can assure that the platform remains resistant to a limited degree of tinkering.
Lastly, optimization problems are well-suited for data confidentiality schemes, since the important
result is selection of the correct data element as a best optimization. Application specific schemes
can achieve this resnlt without revealing the actual test data. Look for new results on this idea soon

from Dr. Doug Szajda. Lastly, pattern matching applications are a sort of subset of optimization

problems, but with the key characteristic that they most often lack structure to their data sets. This

affords the bonus of being able to implement ringers effectively.

s Advantage s Disadvantage
Decreased likelihood Greater variation in
Internet . .
of collusion connectivity
. Lesser variation in Increased likelihood of
Platform Enterprise connectivity. collusion.
Hybrid Middle-ground Middle -ground.
- Disruption more
. damaging
Sequential - Disruption more
difficult to verify
Non-Sequential ?1smptloq a‘ffects
ewer participants
Problem : :
. Inversion of a One- Results easily Open to DOS Attack
Domain Way Function verifiable pento acks
- Natural resistance
to disruption
Optimization - Potential for Data
b Confidentiality
- Ringers schemes
implementable
Figure 4.1
5 Implementation Matters

It is important when considering the efficacy of a security scheme, that the details of

implementation be evaluated. Too frequently in security, fundamentally secure elements are

combined in an insecure way, and this theme carries over to security in distributed computation.

The ability to blacklist is an important consideration. Connection of human and virtual identity is a

difficult task. The structure of the supervisor’s server is also of paramount concern. Finally, care

must be taken that data transmission does not counteract the effectiveness of schemes such as

ringer inclusion.

10

5.1 Blacklisting

A logical reaction to detection of a cheating or sabotaging participant is to blacklist that participant
from the computation in future cycles. Unfortunately this isn’t practical. Sarmenta {15] notes
several reasons for this unfortunate reality. The two most likely candidates for participant
identification are IP and email addresses. Given the technical ability of the assumed attacker,
however, spoofing an IP address is relatively simple. This is not even necessary if the adversary
has access to a large number of IP addresses a network administrator perhaps). Some legitimate
participants, furthermore, might receive IP addresses dynamically. Similarly email addresses are
available from sources such as yahoo [16] for free and in unlimited quantities. It is true that RTTs,
or reverse Turing tests such as those produced by the CAPTCHA project at Carnegie Mellon
University [16] can prevent the programming of a bot to automatically accumulate addresses.
However a determined adversary would have no problem obtaining a significant number of email
addresses, and hence different participant dentities, with the dedication of only a few hours of

mundane point an click on the Internet.

Requiring more personal, detailed information poses the threat of turning away many potential and
much need participants. Large amounts of personal information, however, are required in other
walks of life; perhaps utilizing other institutions people generally involve themselves with would
be efficient. Take for instance, financial institutions. Suppose a participant were required to give
name, address, and bank. Because the financial world is set up in such a way that a person's identity
is difficult to fake, the distributed computation would have a way of identifying participants that
was consequently difficult to falsify. Similarly, use of biometrics would achieve this aim.
Unfortunately, of course, biometrics remains some time away from ubiquitous practicality. The
fundamental problem here is that there is no way to link human identity to cyber identity, period.
Until this problem is solved, it will always be possible for a sophisticated opponent to secure a

falsified identity.

5.2 Natural Ordering

There are two issues that arise when considering how data is actually transmitted to participants.
The first concerns natural order that may occur in data sets sent to participants. For instance, in
order to reduce transmission cost, it is a common practice to impose a total ordering on the data.
Subset begin and end points can then be used as the sole means of defining a data set to be
computed by a participant. The problem here is that this practice completely nullifies the

supervisor’s ability to implement a ringer scheme. Ringers [3] are pre-computed operations within

11

a task that should return significant results. These are then included in tasks as partialexecution
checks on a participant. With an ordering imposed, however, these ringers are immediately spotted
by the adversary. Utilization of ringers that fit into the ordering is equivalent to pre-computing the
entire task. Care must be taken in even the manner in which data is transmitted to participants or

the computation may be compromised.

53 Push vs. Pull

There are interesting implications due to the method of task distribution. Specifically this revolves
around the issue of whether or not tasks are “pushed”, or sent out by the server primarily, or
“pulled”, automatically doled out to the participants as requested. Pull servers are inherently more
efficient, but allow the adversary yet another tool. A sophisticated attack could play to the pll
property in order to get duplicate copies of redundantly assigned tasks. Thus even the dynamic of

task distribution must be carefully considered.

6 Collusion Resistant Redundancy

Given the challenges in terms of implementation, it is possible to significantly improve on the
security of a computation by addressing the way that redundancy is utilized. Simple redundancy
constitutes the most obvious manner of assuring that results are computed accurately. In short,
simple redundancy allocates each task to two participants and thus a check is inserted on each task.
This technique is subject to several shortcomings. The supervisor of the computation is
immediately saddled with twice the compute cost since each task is being sent out to multiple
participants. Double the cost, of course, might be considered acceptable if the result was a
significant improvement in security. Consider, however, that simple redundancy is particularly
susceptible to collusion, Specifically, if an adversary controls both participants to whom a given
task is assigned, then that participant has complete control over the task. He can return significant
results (Whether legitimate or not) or fail to return significant results as he pleases. Indeed, in the
case of an encryption-key search computation, if an adversary controls both participants to whom is
assigned the key-space containing the encryption key, the entire job would need to be redistributed.
Now the supervisor is faced with four times the original cost of the computation. It is clear then
that simple redundancy does not protect well against collusion in terms of result robustness, surely
a technique that is so expensive must offer some other benefit, detection of colluding adversaries,
for instance. This too is not the case. Even if simple redundancy does indeed detect a cheater or

saboteur, it offers no way to catch all other participants under adversarial control.

12

There is a better way to implement redundancy. Although they come at the cost of increased task
tracking on the part of the supervisor, the following array of redundancy strategies allows the
supervisor to increase the likelihood of detecting an adversary and to detect all participants under
control of a colluding adversary after detection of one participant. Twice the cost should produce
twice the benefit!

Consider the following tasks to be evaluated.

Figure 6.1
Task A Task B Task C Task D
Al B1 Cl1 D1
A2 B2 C2 D2
A3 B3 C3 D3
Ad B4 Cc4 D4
A5 B5 C5 D5
A6 B6 C6 D6
A7 B7 C7 D7

Then using simple redundancy 8 participants would be needed, and allocation might look like the

following:

Figure 6.2

A3 43 B3 B3 3 D3 D3
A4 A B4 B4 c4 c4 D4 D4
A5 a5 BS BS cs cs D5 D5
A6 A6 B6 B6 C6 C6 D6 D6
A7 a7 B7 B7 c7 c7 D7 D7

13

6.1 Vertical Partitioning

As shown prior, simple redundancy suffers from significant shortcomings. By changing the
granularity at which redundancy is implemented, however, new possibilities become apparent. In
simple redundancy the above tasks were treated as units. Suppose they are subdivided as shown

follows.

Figure 6.3

A3 B2 B7 B7 C1 C2 C3 C4
A4 B3 C1 Cs Cs C6 C7 D1
AS B4 C2 Co6 D2 D2 D3 D4
A6 B5 C3 C7 D3 D5 DS D6
A7 -B6 C4 D1 D4 D6 D7 D7

There are several properties about this scheme that are of note. Essentially the work of each -
participant is checked by every other participant in the computation. This is tremendously effective.
~The granularity of the redundancy has been changed, and it is easily demonstrated that with the

proper algorithms, the scheme can actually be used to prevent cheating and sabotage.

Consider the possibility of checking each matching subtask in the computation. Because this
consists of simple comparisons, it is extremely efficient. In fact, it is very likely to be more
efficient than re-computation of even a single subtask. This method is easily summarized in the
following algorithm.

Algorithm 6.1
Preliminary()
For(Each participant) {
For(Each subtask)
if(not checked)
verify redundant subtask
If(results conflict) Flag Participants

14

Recall that cheating is defined as an attempt to gain credit for work not performed. It is clear that
cheating is eliminated if you consider a cheater's possible strategies. Should a cheater control only
a single participant, then attempting to return a result without actually performing the computation
is fruitless, since the server immediately identifies the erroneous results. Every subtask has been
checked by another participant. Now examine the instance in which a cheater has control of several
adversaries. As previously mentioned, he is able to determine precisely those tasks that he has been
redundantly assigned. By returning matching results he eludes detection without having performed
the computation. However, he is still forced to compute the remaining subtasks or face being
caught. Furthermore, the compute expense associated with determining which subtasks are
redundant is likely to nullify the benefit of cheating on them. Thus algorithm 6.2 successfully

eliminates cheating.

Simple result matching does not, however, solve the problem of sabotage. An adversary whose
goal is to undermine the computation has a simple yet effective strategy. As stated above, the task
of determining which subtasks a pair of participants have been assigned redundantly is easily
accomplished. With this information in hand, the adversary has only to return erroneous, yet
matching results for its redundantly assigned subtask, and he has successfully undermined the
computation. Can this new form of redundancy affect an adversary’s ability to collude? Consider

the following algorithm:

Compute the equivalent of 1 task, by computing 2N - 1 subtasks. In figure 6.2, for example, one
could compute all of task A, or a combination of subtasks from all 4 tasks. The key is that every
participant has at least one subtask that will be computed and checked by the supervisor. The

following algorithm can then be used to identify all colluding adversaries.

Algorithm 6.2

Search(){
For(each computed subtask){
If(returned results are wrong and match)
Mark participants as adversaries
}
Now, choose the first adversary found, call him A
For(each subtask assigned to A){
Compute subtask
Check subtask
If{subtask doesn’t check)
Mark new adversary

15

The thing to notice here is that it is never necessary to compute more than 2 tasks, and it can be
guaranteed that all of the adversary's participants will be determined. As N grows larger,
computation of 2 tasks becomes less of an expense. Algorithm 6.3, of course, has a determined

probability of catching a sabotaging adversary, as computed by Szajda et. Al. in Appendix C.

6.2 Horizontal Partitioning

It quickly becomes obvious that vertical partitioning is not scalable on the order of a large-scale
distributed computation. In fact, it becomes unreasonable for values of N greater than
approximately 50 [4]. Horizontal Partitioning allows dynamic tuning of the methodology in order

to scale to any application.

Consider a job consisting of M tasks. Horizontal partitioning divides the participant pool of 21/
participants into C clusters . In each cluster vertical partitioning will be applied to the / tasks in

that cluster, distributing them to 2N participants. The relationship is thus

Eqﬁation 6.1 C=M/N

Consider simple parameters. Let M = 4, N=2, and thus C=2. The 4 tasks will be denoted A,B,C,

and D, and each will be split into 2N-1=3 subtasks. The resulting distribution would be as follows:

Figure 6.3

Al 1 A2 A3 C1 C1 C2 C3

A2 Bl B1 B2 C2 D1 D1 D2

A3 B2 B2 - B2 C3 D2 D3 D3
Cluster A Cluster B

16

This partitioning method, in addition to its complete scalability, addresses the issue of collusion
more appropriately in that a pair of adversaries is no longer guaranteed to have a pair of subtasks in
common, unless of course they are part of the same cluster. Horizontal furthermore offers the
supervisor flexibility. The parameters can be changed at will within the constraint of Equation 6.1.
In considering the horizontal partitioning method, a disadvantage should be pointed out. One
cannot guarantee the successful determination of all adversarial participants because they will not

all have redundantly shared subtasks.

Lastly, according to the mathematical proofs given by Szajda et. Al [4] the following properties
hold:

o For a given proportion of participants controlled by the adversary, the expected
number of tasks controlled by the adversary is identical under each of the
strategies.

o The stability of the strategy is superior in the sense that the variance of the
number of tasks controlled by the adversary is greatly decreased.

o Given that an adversary with matching tasks or subtasks will disrupt the
computation a consistent proportion of the time, the probability of detecting
this activity is significantly improved over that achieved through simple

redundancy.

6.3 Adversary Detection Analysis

Absent the availability of an actual distributed computation implementation, computer simulation
offers the most effective means of gaining hard data on the efficacy of a scheme. Just such a
simulation was developed to test the efficiency of the vertical partitioning method. This simulation

was completed using the C programming language.

There are several variable elements to consider. First the proportion of the participant pool under
the control of an adversary. This indicates either one human identity in control of multiple
participant usernames, or multiple human identities colluding. The resulting situation is the same in
either case. The second variable to consider is the proportion of the time that, when given the
opportunity, an adversary will attempt to sabotage the computation. It would be useful to know
what percentage of the time these adversaries are caught. Figﬁre 6.4 depicts these figures when

percentages of the population equal to 3, 6, 9, and 12 are controlled by the adversary. Interestingly,

17

at 12% of the population, every attempt to disrupt the computation is caught. Even at 3 percent, a

high percentage of sabotage attempts are foiled.

Figure 6.4

% Adversaries Caught

©
-—

—

coo
~ 00 ©

OO0 00O
N W b OO

o

Vertical Partitioning: P = 3%

L4

. ' .w,—-,,’.,__ .WN,,.,‘....._..,M‘_,W‘_..,‘}

40 60
Probability of Disruptive Activity

—

80 100

18

Vertical Partitioning: P = 6%

—_

L 4
*
*
4
*
*
L 4
L 2
¢
L g
*
*
*

*

e oo
N @ ©

% Adversaries Caught
© o0 oo o0
N W H O O

©
—

o

20 40 60 80 100
Probability of Disruptive Activity

Figure 6.4 Continued

~—
J

S ._‘,m.’_‘.......w‘,,,m..,,‘w VY R S S S S S S W S Sy S "

Vertical Partitioning: P = 9%

L4

O 0000
g O N o

o
»

% Adversaries Caught

© oo
o oW

o

T T 1 1 1

20 40 60 80 100
Probability of Disruptive Activity

19

Vertical Partitioning: P = 12%
1 Tt o e s el o e e A Al
0.9
£ 08
3 0.7
3]
o 0.6
°
= 0.5
£ 04
3: 0.3
2 0.2
0.1
O L] T T T
0] 20 40 60 80 100
Probability of Disruptive Activity

Consider, furthermore, that horizontal partitioning constitutes multiple implementations of vertical
partitioning to allow scaling. Note also that Szajda et. al [4] proves that the proportion of tasks
controlled by the adversary in both vertical and horizontal partitioning is the same, thus these

results hold for horizontal partitioning as well.

The paper entitled “Collusion Resistant Redundancy”, included as Appendix B in this paper,

provides a further, formal treatment of horizontal and vertical partitioning.

8 Related and Future Research

There are two topics of potentially great interest to distributed computation security. The first is the
similar, though unique problem of mobile agent security. The second concerns the implications of

running distributed computing platforms on wireless networks, an area sure to see substantial

interest in the near future.

20

Mobile agents are autonomous code fragments with the ability to move about a network. They are
able to move around this network in order to perform checks at each node, to collect information,
and to perform analysis. Agents can even be capable of communicating with one another, hus
creating the possibility of online auction and bidding scenarios. The potential is truly endless.
While there have been effective solutions produced to protect hosts from malicious agents, the
dilemma of how to protect an agent from a malicious host has gone unsolved. This is a difficult
problem. Agents are fundamentally dependei t upon the hosts they visit to provide an execution
environmenf, but remain unable to guarantee that that execution environment will act as expected.
Furthermore, how is an agent to maintain the secrecy of the data that may be necessary for the

completion of the task code at the host.

Agent technology is interesting in the context of distributed computations, because a solution to the
quandary of securing mobile agents from malicious hosts would offer a potential solution to the
problem of securing distributed computations. The computation code would simply be run by an
agent and then returned to the supervisor. Thus, the study of proposed mobile agent security

solutions is appropriate in this context.

There has been a great deal more research into this effort than there has been in the realm of
distributed computatig)n security, yet the problem remains unsolved. It is important to note in
closing on this subject, that security in distributed computation is different than securing mobile
agents against malicious hosts. There are many options open to the computation supervisor not v
open to the controller of a mobile agent, many of which have been detailed in this paper. It is a
worthwhile reference, however, as the topics do have that distinct connection, and advances in one

could very well provide quality insight into new security mechanisms in the other.

A great deal of future research in distributed computation may well center around wireless settings.
The proliferation of PDA’s and cell phones has created a vast and untapped resource. Essues with
this medium will include the often weak processing power and memory capacity on these devices.
Processor speeds on personal computers are such that significant processing ability can be achieved
through the aggregation of a reasonable number of machines. Of course, if Moore’s law applies to
these devices, the significance of their processing ability may well increase with great rapidity.
Another issue is battery life. Length of charge is one of the most crucial elements of a mobile
device in terms of determining its usefulness to the consumer. Operating these mobile devices at

close to capacity could put a significant dent in battery life, regardless of the enormous amounts of

21

energy that full-color LCDs take up themselves. Finally, mobile devices are inherently less
dependable in terms of connectivity. These concerns and others will need to be addressed if the
wireless arena is to become conducive to distributed computation. Given the current rapid

proliferation of these devices, these questions are almost certain to be asked.

9 Conclusion

The potential of distributed computation is enormous. Continued increases in the already
tremendous processing power present in personal computers will only augment this potential.
Ameliorating the difficulties currently present in the wireless arena and increased connectivity, too,
will only increase the sum computational power available all over the globe. Given this bright
outlook it is imperative that research be continued in the area of securing these computations. As
potential compute power increases, so too will a desire to profit from this ability. Increased
commercialization of the technology will only invite increased attacks against these systems. Full
defense of a distributed computation is not a simple affair. Consider, though, the six security tenets
which a supervisor hopes to achieve: data secrecy, participant authentication, data integrity,
cheating resistance, disruption resistance, and data confidentiality. Given that the first of these
three is adequately addressed via a PKI implementation including digital signatures, the task seems
more tractable. Consider also that the Algorithm 6.1 effectively eliminates the effort of a cheating
adversary with acceptable cost, and that collusion resistant redundancy improves the effort to
achieve disruption resistance. It is these last two elements that prove most difficult. Application
specific techniques are possible in achieving data confidentiality, but in short, disruption

prevention and data confidentiality are still in need of further research.

This paper does, however, provide a means to examine a particular distributed computation and
determine which types of attacks it, in particular, is subject to, as well as the options that.are open
in terms of security protocol, and to guide the security mechanisms that are put in place.
Furthermore, redundancy can be implemented in a much more useful manner, and indeed improves
upon the security of a computation by allowing the supervisor to reliably identify adversary
controlled participants. The inability to blacklist shall remain a thorn in the distributed computation
supervisor’s side, but awareness of which participants are malicious does allow that supervisor to

take non-expensive precautions towards that adversary.

22

Securing a large-scale distributed computation requires careful thought and analysis, ever keeping
in mind that in security, it is often the implementation details that bring down the system. It is,

however, a tractable problem, and will only benefit from future research to come.

23

(1]

(2]

31

(41

5]

(6]

(7]

(8]

[9]
[10]

(1]

[12]

[13]

[14]

24

References

R.L. Rivest, A. Shamir, and L. Adleman, A Method for Obtaining Digital Signatures and
Public-Key Cryptosystems. Communications of the ACM. Volume 21, Issue 2: pages 120-
126, February 1978. '

D. Szajda, B. Lawson, J. Owen, and E. Kenney. Issues in Securing Large-Scale Distributed
Computations. Submitted to Proceedings of the 2004 ISOC Network and Distributed
System Security Symposium.

D. Szajda, B. Lawson, and J. Owen. Hardening functions for large-scale distributed
computations. In Proceedings of the 2003 IEEE Symposium on Security and Privacy, pages
216-224, Berkeley, CA, May 2003.

D. Szajda, A. Charlesworth, B. Lawson, J. Owen, and E. Kenney. Collusion Resistant
Redundancy. Submitted to Proceedings of the 2004 IEEE Symposium on Security and
Privacy.

The Search for Extraterrestrial Intelligence project. University of California, Berkeley,
http://setiathome.berkeley.edw/.

Bojan Zagrovic, Eric J. Sorin, & Vijay S. Pande. Beta Hairpin Folding Simulations in
Atomistic Detail Using an Implicit Solvent Model. Journal of Molecular Biology, 313(2):
151-169, 2001.

Michael R. Shirts, Vijay S. Pande, Mathematical Analysis of Coupled Parallel Simulations.
Physical Review Letter, 86 (22), May 2001.

Stefan M. Larson, Christopher D. Snow, Michael R. Shirts, and Vijay S. Pande,
Folding@Home and Genome@Home: Using Distributed Computing to Tackle Previously
Intractable problems in computational biology. Comutational Genomics, 2002.

Lawrence Hunter, Molecular Biology for Computer Scientists.

Michael R. Shirts, Vijay S. Pande, Atomistic Protein Folding Simulations on the
Submillisecond Time Scale Using Worldwide Distributed Computing, Wiley, 86(22), May
2001.

T. Sander and C.F. Tschudin. Protecting Mobile Agents Against Malicious Hosts. In G.
Vigna, editor, Mobile Agent Security, pages 44-60. Springer-Verlag: Hedielberg, Germany,
1998.

N. Draper and H. Smith. Applied Regression Analysis. John Wiley & Sons, 1966.

The Great Internet Mersenne Prime Search.
http://www.mersenne.org/prime.htm.

T.F. Smith and M.S. Waterman. Identification of Common Molecular Subsequences.
Journal of Molecular Biology. 147: 195-197, 1981.

[15]

[16]

[17]

25

L. Sarmenta. Sabotage-tolerance mechanisms for volunteer computing systems. In
Proceedings of the ACM/IEEE International Symposium on Cluster Computing and
the Grid, Brisbane, Australia, May 2001.

CAPTCHA Project, Camegie Mellon University, Pittsburgh, PA.
http://www.captcha.net

Yahoo
http://www.yahoo.com

26

APPENDIX A

Issues in Securing Large Scale Distributed Computations

Issues in Securing Large-Scale Distributed Computations

Doug Szajda Barry Lawson Jason Owen Ed Kenney
University of Richmond
Richmond, Virginia
{dszajda, blawson, wowen, ekenney2}@richmond.edu

ABSTRACT Many recent large-scale distributed computing applications. utilize spare processor cycles
of personal computers that are connected to the Internet. These computations run in untrusted envi-
ronments, raising a number of security concerns, including the potential for disrupting computations
and for claiming credit for computing that has not been completed. Though security research specific
to these computations has increased in recent years, there has been little consideration of the ways in
which application and platform structure and implementation atiributes can influence the effectiveness
of security mechanisms. In this paper we ezamine these issues using examples of actual implementa-
tions and proposed security solutions. We show in particular that the combination of attributes present

. in some current platform implementations creates a situation in which collusion is not only feasible but
easily achieved. Because security measures based on redundancy are weak in the presence of collusion,
applications protected by such measures (i.e., most current implementations) may be less safe with these
mechanisms than without.

1 Introduction

The advent of large-scale distributed computing platforms, consisting of many personal computers connected to
the Internet, provides researchers and practitioners a new and relatively untapped source of computing power. By
utilizing the spare processing cycles of these computers, computations are now possible that were once unobtainable
without the use of a supercomputer. In a typical distributed computation, the computation is easily divisible into
independent tasks, each of which can be processed by a typical personal computer in a few hours. A participant
downloads code from the supervisor of the computation in order to establish an execution environment in which the
supervisor can execute tasks. Each task is assigned and dispatched to a participant, and upon completion of the task
significant results are returned to the supervisor. In this context, providing a level of assurance for results is difficult
because the results are obtained by executing tasks in untrusted environments. Participants can intentionally or
unintentionally corrupt results, and can attempt to claim credit for work not completed. The supervisor can validate
results by assigning each task to two or more participants, but as a result at least half of the processor cycles are
lost to the validation process.

In recent years, a small but growing collection of papers has emerged that cover various security issues specific
to these computations. Golle and Mironov [19] consider computations involving inversion of a one-way function
(IOWF). They present several protection mechanisms and use game theoretic arguments to measure the efficacy
of their strategies. Golle and Stubblebine [20] present a security based administrative framework for commercial
distributed computations. Monrose, Wyckoff, and Rubin [27] propose instrumenting host code in order to generate
lightweight execution traces that can be used to verify program execution. Most recently Sarmenta [32] and Szajda,
et al. [36] present probabilistic verification mechanisms that increase the likelihood that an attempt to disrupt or
cheat a computation will be detected.

Collectively, these papers exhibit two common characteristics. First, the papers generally treat applications as
abstractions, rarely discussing structural and implementation details. This is unfortunate because, as we show
here, these details can significantly impact both the performance of an application and the ability of a proposed
mechanism to secure the computation. Security mechanisms that work well in theory may prove difficult or costly
in practice — the inherent structure of an application, the implementation of that application, and the platform on

“which it executes must all be considered. Second, all the papers rely to a certain extent on redundancy as a means

for securing computations. We agree that, in some cases, redundantly assigning tasks may be the only feasible
security mechanism. However, there are other cases for which redundancy may be inefficient and/or inappropriate
— redundancy or self-correcting features may be inherent in the structure of the application itself. Moreover, the
use of redundancy as a means to secure a computation can unwittingly open the computation to other attacks, most
notably via collusion. The intent is not to discourage the use of redundancy, but instead to raise awareness to the
ramifications that accompany redundancy.

The contribution of this paper is to bring to the forefront issues unique to large-scale distributed computations
that, to date, are rarely considered. In particular, through examples of real implementations and proposed security
mechanisms, we examine

e how the specific structure of an application can influence the efficacy of various security measures;

e how platform and application implementation subtleties can influence the efficacy of proposed security solu-
tions; ‘

e how some common assumptions, such as that of a low probability of collusion, are misgiven; and

e how computations that use redundancy for assurance may be relying on false assumptions.

Protection measures that fail to account for these issues can leave a computation vulnerable to attack.

To our knowledge, this is the first paper that considers application and platform specifics and how they relate to
securing these computations. In the process of our discussion we present several attacks that are unique to these
computations, point out the application and platform implementation decisions that create vulnerabilities to them,
and discuss ways of providing increased resistance to these attacks. Our purpose in discussing these attacks is not
to provide a roadmap for adversaries. Rather, we wish to create an awareness of these issues at this relatively early
stage in the study of securing such computations, and to provide a common and realistic set of assumptions on
which future research efforts can be based.

Attacks that result from compromises of data in transit are beyond the scope of this paper — we assume the integrity
of such data is verified by other means. In addition, we do not consider attacks that result from the compromise of
the central server or other trusted management nodes.

The remainder of the paper is as follows. In Section 2 we present a model of the distributed computations and
of the platforms under consideration. Section 3 discusses related work. Section A provides examples of appli-
cations amenable to the distributed metacomputation technique. The examples presented here describe existing
implementations, and serve as the basis for our observations in the remaining sections. Sections 5 and 6 discuss
applications and platform characteristics that can influence achievable levels of security, and some attacks specific
to these computations are presented. Section 7 discusses some of the problems inherent in securing computations
using redundancy. We present our conclusions in Section 8.

2 The Model

We consider parallel computations in which the primary computation, the job, is easily divided into tasks small
enough to be executed by a PC in a “reasonable” amount of time, which may depend on the specific application.
Tasks are independent and consist of one or more operations. Tasks can consist of a single extended operation, such
as testing the primality of a Mersenne number, or a large number of smaller operations, as in a brute-force search
for a cryptographic key.

The computing platform consists of a trusted server coordinating as many as several million personal computers
in a “master-slave” relationship. These participants! are assigned tasks by the supervisor. Participants download
code, typically in the form of a screen saver or applet, that serves as the local execution environment for tasks.
Communication required for a computation is necessary (and permitted) only between individual participants and
the supervisor. Participants may receive remuneration in a variety of forms for completing their assigned tasks.

!The term participant denotes both the node 'and the user depending on context.

2

With respect to any distributed computation, we assume the existence of one or more intelligent adversaries. An
adversary possesses significant technical skills by which he or she can efficiently decompile, analyze, and/or modify
task or execution environment code. In particular, the adversary has exact knowledge both of the algorithm used
for the computation and of the security measures used to circumvent attacks. An adversary will attempt to disrupt
the computation in one of two ways:

e the adversary will attempt to cheat, i.e., obtain credit for work not performed;

o the adversary will attempt to sabotage the computation by intentionally returning incorrect results or by
intentionally failing to return significant results.

Additionally, we assume that collusion among adversz ies is likely (see Section 6.4).

The reasons motivating an attack can vary based on many factors [9, 10]. For platonic applications (e.g., SETIQ@Home,
Folding@Home, etc.), maximizing credits obtained (for recognition or for relatively small monetary remuneration)
may be sufficient motivation to cheat. For business related applications (e.g., Monte Carlo financial modeling),
an adversary may hold competitive business interests and therefore be intent on sabotaging the work. Moreover,
the motivations for an attack may be unpredictable and/or unexpected, such as an attack by a quietly disgruntled
employee. Any attempt to categorize the motivations of a potential-adversary would therefore be incomplete at best.
However, the realization that unknown adversaries exist with unknown motivations is paramount for achieving a
well-secured computation. Furthermore, it is easy to dismiss certain potential attacks as irrational and therefore
unlikely. The supervisor of a computation would be wise to instead consider any potential adversary as rational,
except that the utility function of that adversary may or may not be known.

As the previous discussion highlights, many of the assumptions concerning a potential adversary are based on
speculation. We strongly believe that a comprehensive study is needed that determines the type and frequency
of occurrence of the attack strategies encountered in practice — i.e., a demographic of disruptions. For example,
because the utility function of an adversary is unknown, the owner of a computation cannot determine a priori
the frequency with which an adversary will cheat or attempt to sabotage the computation. Unfortunately, to date
there is insufficient empirical data upon which to base a realistic threat model. As such, the assumption that an
adversary will cheat according to a simple probability distribution is unlikely to accurately model an attack strategy
of an adversary in practice. Further study, via experimentation and available statistical information, is therefore
necessary to more accurately construct a realistic adversary framework.

3 Related work

Several recent implementations of distributed computing platforms address the general issues of fault-tolerance
[7, 8, 11, 13, 29, 31|, but assume a fault model in which errors that occur are not the result of malicious intent.
The solutions presented are typically a combination of redundancy with voting and spot checking. In a preliminary
investigation of the problem of fault-tolerant distributed computing, Minsky et al. [26] found that replication and
voting schemes alone are not sufficient for solving the problem. They assert that cryptographic support is required
as well, but only sketch the methods they envision for solving this.

Golle and Mironov [19] study computations involving inversion of a one-way function (IOWF). These applications
seek the pre-image zg of a distinguished value yo under a one-way function f : D — R. In the absence of redundancy,
only a single task contains the desired preimage providing little chance of detecting an adversary who falsely claims
to have completed work. Golle and Mironov present several variations on a basic ringer scheme, in which values
of f are precomputed and the results planted in task data spaces. Since participants are not able to distinguish
which data corresponds to ringers, the probability of detecting cheating is increased. Because their methods focus
on a single class of application they are naturally application specific. Neither application nor platform design and
implementation issues are discussed.

Golle and Stubblebine [20] present a security based administrative framework for commercial distributed computa-
tions. Their methods rely on selective redundancy to increase adversary detection probabilities. Their framework
provides flexibility by allowing the distributions that dictate the levels of redundancy to vary. They do not address
application or platform specifics, focusing instead on a game theoretic model based on estimates of a participant’s
utility of disrupting the computation and cost of being caught defecting.

3

Monrose, Wyckoff, and Rubin [27] consider methods of assuring host participation in computations, assuming that
users wish to maximize their profit by minimizing resources. The method requires instrumenting task code at
compile-time so that it produces checkable state points that constitute a proof of execution. On completion of the
task, the participant sends results and the proof to a verifier, which then runs a portion of the execution and checks it
against the returned state checkpoints. Aside from considerations directly related to their instrumentation, such as
the necessity of having tasks that can be transformed into checkable units with similar execution times, application
and platform characteristics and implementation details are not discussed. Unlike the other articles discussed here,
their methods do not rely on tasks being redundantly assigned. Rather the burden of checking proofs of execution
fall to the server. '

Szajda, Lawson, and Owen [36] present two general schemes for using probabilistically applied redundancy to give
applications greater resistance to cheating. They divids applications into two broad classes: non-sequential, in which
tasks consist of independent operations; and sequential, in which the operations that constitute an individual task
can have dependencies and must be executed in a specific order. Their technique for non-sequential applications is
essentially an extension of the Golle and Mironov ringer scheme to more general functions. They handle sequential
applications by breaking computations into several stages, assigning N tasks to K > N participants, and using
probabilistic verification. Some application and platform specifics are mentioned, though only briefly and only in
the context of applicability of their methods. They mention the possibility of colluding adversaries but assume that
this occurs with low probability.

Sarmenta [32] proposes a credibility-based system in which multiple levels of redundancy are used, with parameters
determined by a combination of security needs and participant reputations. Sarmenta notes that 6.3, blacklisting of
participants is not possible in most distributed computations. Application and platform implementation specifics
are not discussed. Collusion is considered during analysis of his system, but as in [36], the probability is assumed
to be low,

There is also a body of literature related to the question of protecting mobile agents from malicious hosts (see
e.g. {21, 22, 23, 30, 39, 38]). Because a primary difficulty in both problems is that of executing code in untrusted
environments, it is natural to assume that potential solutions to either might be applicable in some form to the other.
For future solutions this may be the case, but there are important differences that make the few solutions available for
protecting malicious hosts difficult to apply to distributed metacomputations. First, many mobile agents execute in
untrusted environments because they require data that is available only in those environments. Tasks in distributed
metacomputations, on the other hand, possess all data necessary for complete execution, and therefore can be
checked by the computation supervisor. There is thus the potential for solution in the metacomputation context
that would fail for mobile agents. Mobile agents typically visit hosts for a relatively short period of time, whereas
metacomputation task code may require several hours of running time. Thus time limited obfuscation approaches
such as those advocated by Hohl [22, 23] are not applicable in the present setting. Finally, metacomputations deal
with issues of scale not present in current mobile agent systems.

4 Examples

We use as examples five currently implemented applications: the exhaustive regression and Smith-Waterman se-
quence comparison implementations written for the Parabon Computation, Inc. Pioneer distributed computing
platform; the protein folding implementation used by Folding@Home; the Search for Extra-Terrestrial Intelligence
project conducted by SETI@Home; and the Great Internet Mersenne Prime Search (GIMPS) application developed
by Entropia.com. Details of each of these examples are provided in Appendix A. A brief description of each is
presented here. '

Regression [14] is a technique for fitting experimental data to a (possibly N-dimensional) function of the form
y=a+bizy +boxo + ...+ bnzn,

where x,,29,...,T) represents the predictor variables and y is the response variable. The coefficients a and
bi,...,by are determined via least squares methods [14]. The goal is to find the smallest subset of predictor variables
that significantly influences or determines the value of the response variable. Exhaustive regression addresses this
goal using a brute force method. All possible combinations of predictor variables are tested in order to determine
the single combination of predictors that produces the “best” fit.

4

Folding is the process by which a protein, consisting of a string of amino acids, takes on the physical configuration
that gives the protein its biochemical functionality. A protein’s folded structure is predetermined by its amino-
acidic composition, but determining this configuration a priori is quite difficult. A protein folds in such a way that
the total free-energy of the resulting structure is minimized. To solve this minimization of free energy problem,
Folding@Home [15], a distributed computing project run by the Pande Group at Stanford University, transmits
molecular dynamics (MD) simulations to thousands of participants. Each MD simulation is initialized with the
same set of coordinates describing the locations and initial velocities of atoms, but each participant simulates a
different fold by incorporating random thermodynamic forces [43]. The process of folding takes a protein through
several metastable states before producing a final configuration. When any task transitions to a new state, all
other tasks are restarted using the molecular coordinates of the transitioned task. Each realigned task continues
using a unique random sequence of thermodynamic forces acting upon the molecules, allowing coverage of the entire
configuration space.

Smith-Waterman [35) is a sequence comparison algorithm that utilizes a dynamic programming technique to find
similarities between strings of DNA nucleotides or amino acids. Given a sequence, the algorithm is typically used to
locate in a large database (e.g., from NIH) the sequence that most closely matches the given sequence. Furthermore,
one may consider segments of each sequence that are most similar. Because the number of different sequence
alignments is enormous, significant compute power is required to execute the dynamic programming algorithm,
making Smith-Waterman amenable to distributed computing platforms.

The SETI@Home project [6, 25, 1] attempts to detect signals of extraterrestrial origin. Their efforts require a
significant amount of compute time because the parameters of extraterrestrial signals are unknown and because
required processing costs rise in accordance with increased search sensitivity. Given the large number of potential
parameters, tasks require from 2.4 to 3.8 trillion floating point operations — about 10 to 12 hours on a 500MHz PC.
SETT assigns tasks redundantly (with a factor of 2 or 3) and performs cross checking. SETIQHome is by far the
largest distributed metacomputation project in existence. As of this writing they have registered over 4.6 million
usernames and have processed over one billion tasks representing almost 1.6 million years of total CPU time.

The Great Internet Mersenne Prime Search is an ongoing project run by Entropia.com [18]. The nth Mersenne
number, denoted M, is defined by M,, = 2" — 1. A Mersenne number can only be prime if n is prime, but the
primality of n is not a sufficient condition for the primality of M,,. The Lucas-Lehmer Theorem [12] states that M,
is prime if and only if S(n —1) = 0 (mod M,,), where

4 k=0
S(kH)‘{ Sk -2 k=1,2,...

A GIMPS task consists of checking a single candidate. Considering that the most recent GIMPS success was the
discovery of the Mersenne prime 213:466:917 — 1/ the number of iterations required in such a task is significant.

5 Application Specifics Matter

Failure to understand the peculiarities of a specific application can lead to difficulties when applying a security
mechanism. In some cases, application characteristics are such that a proposed mechanism bécomes ineffective
without significant changes to the implementation. Often these subtleties are not obvious; in many cases, applications
that appear similar may be affected in entirely different ways. Characteristics that can affect proposed security
mechanisms include the ease with which task execution or results can be verified, structure inherent in the input
data, and the form and content of returned results.

5.1 Inherent Structure in the Data

As an example of the kind of difficulty that can arise due to structure inherent in input data, consider a travelling
salesperson application and the ringer mechanism proposed in [36] to handle optimization problems. An optimization
computation involves finding the input (from an assumed huge set) that optimizes a specific objective function. Using
the ringer mechanism, the supervisor of the computation is advised to assign a small fraction of the total input
space redundantly, after which the best returned results are planted in subsequent task data spaces. An honest
participant executing such a task will return each of these precomputed results as significant, thereby providing the

5

supervisor with a partial execution check. Fundamental to this method is that the ringers are not distinguishable
to the participant. In theory this is simple, but in practice there will likely be structure in the data that will expose
the ringers.

Consider the implementation of travelling salesperson. A weighted (complete) graph representing cities and dis-
tances, along with the set of circuits to be checked, is transmitted to a participant. To keep communication costs
low, the supervisor is likely to impose a total ordering on the data. In this way, endpoints of the data set can be sent
rather than the entire data set itself (which could be very large). However, imposing a total ordering immediately
exposes the ringers — if the ringers have been “injected” into a given task data space, they will not be a natural
part of the ordering and will therefore be visible. On the other hand, finding good ringers that occur “naturally”
in a particular task data space requires precomputing the entire task. For the implementation described, the ringer
method is no better than assigning each task twice.

The implementation described above is relatively simplistic and inefficient. A great deal of redundancy can be
eliminated if circuits are grouped carefully. For example, in a 50-city tour the circuits {1,2,...,47,48,49,1} and
{1,2,...,47,49,48,1} differ in only two distances, so assigning them both to a single task would allow the cost of
the path {1,2,...,47} to be computed only once. Regardless of the data structure detail necessary to implement
such an idea, some inherent order or organization to the data structures will exist, thereby exposing the ringers.

The problem of exposing ringers is not unique to travelling salesperson — exhaustive regression suffers from the
same difficulty. In Parabon Computation’s implementation of exhaustive regression, the input data consists of bit
strings, where each bit represents a single regressor. A regressor is included in a specific multiple regression if and
only if the corresponding bit in the bit field is set. Rather than send several bit fields, a total order is applied by
representing each bit field as an unsigned integer. In this way, bandwidth is saved by sending a delimiting start and
end integer — the participant is instructed to compute using the bit fields corresponding to all integers between
these delimiters. The result, however, is that the ringer strategy cannot be directly applied. If instead the data
distribution scheme is changed to, say, one that simply sends each task an entire set of bit fields in some random
order, increased communication costs and increased processing at the server result. Moreover, an adversary must
not be able to recognize and predict the random ordering. Fortunately, the exhaustive regression input data format
discussed here has the desirable property that any bit field of appropriate length is a valid input. By encrypting
the randomly ordered bit fields, the server can implant ringers without fear of exposing the ringers or the random
sequence used. As such, a participant can operate directly on an encrypted bit field, providing a security mechanism
that addresses structure inherent to the data.

As a different example, consider a Smith-Waterman DNA sequence comparison application as described in Sec-
tion A.3. As with the travelling salesperson problem, this application involves optimization. More specifically, the
best matching pair of sequences is desired. The task input data consists of sequences over a small finite alphabet. In
DNA sequence comparisons, however, there is no inherent order among the data, so ringers can be planted in task
data without being exposed. Hence, we have shown that two optimization problems can, from a security standpoint,
react to the ringer scheme in entirely different ways.

5.2 Return Values

There should always be something returned by a task, if only to provide notice to the server that the task has-
been completed. Progress reports, i.e., short notices that indicate the percentage of work completed and significant
results obtained thus far, are also desirable. The reports can be used not only for measuring progress, but also for
providing additional information that can be used to augment security mechanisms. For example, progress reports
can be used to implement a more fine-grained version of redundancy. Rather than have two participants compute
the same task, N tasks can be assigned to N + 1 participants, with IV participants completing the entire assigned
task while one computes the first 1/N of each of the N tasks. More generally, N tasks can be assigned in their
entirety to N participants while various portions of the tasks are assigned to K additional participants. Assuming
K is less than N, the redundancy factor (the number of participants assigned tasks divided by the number of tasks)
can be significantly less than 2. Moreover, even if participants are aware that such partial redundancy is being
used, they do not know how much of their own task is being checked, thereby providing an incentive to complete
the entire task.

Progress reports also help minimize the impact of a type of denial of service attack unique to distributed metacom-
putations. Specifically, an adversary assigned a task can simply return nothing. There are many legitimate reasons
why a task may not be returned. A participant may be busy with other work — task code typically runs either in

6

the background or when the host computer has been idle for a fixed period of time. In addition, users with dial-up
connections are only online intermittently, and can be offline for several days at a time. Thus the failure to return
a result is not necessarily a malicious act. To address results not returned, most platforms enforce a timeout value,
after which the task is reassigned to another participant. In the meantime, however, the new effect is that the work
is not being completed. ‘

In this context, an adversary controlling a single task poses little threat — the denial of service lasts only a few days.
However, an adversary controlling several thousand tasks, using perhaps several hundred usernames, and continually
adding to their collection of tasks and names becomes more than a nuisance. In addition, there is no mechanism
to prevent reassigning the tasks to the adversary. We show in Section 6.4 that if platform implementations lack
measures to prevent automated generation of usernames and task requests (and we know of no platform that
currently has such measures), an adversary can easily acquire tens of thousands of tasks, more than enough to
create a serious disruption

Progress reports minimize this attack by effectively reducing the required timeout length. One disadvantage of
such an approach is the problem of an already overloaded server handling the resulting increase in traffic. Consider
that SETI@home clients do not send progress reports. In the approximately 1600 days that SETI@Home has been
operational, results for over one billion tasks have been received, yielding an average rate of more than 7 tasks
per second. Because generating n progress reports per task means a corresponding n-fold increase in server load,
progress reports may require an n~fold increase i communication and server capacity.

Requiring that all tasks generate at least one significant result is part of the motivation behind the various ringer
schemes presented in [19] and [36]. In practice, if some variant of the ringer scheme cannot be applied, increasing
the number of values returned from an application by lowering a threshold can be difficult. The tuning required to
increase the number of return values is, in many cases, relatively coarse, and the danger exists that increasing the
number of significant results may swamp the server. In addition, such tuning may not guarantee that all tasks will
have significant results. For example, increasing the total number of significant results in an exhaustive regression
application can always be achieved by lowering the threshold correlation. Short of setting the threshold to zero,
however, lowering the threshold does not guarantee that each task will generate a significant result. Moreover, even
slight changes to a threshold can have an overwhelming impact. During early testing of the Parabon exhaustive
regression engine, tasks were assigned only 5000 multiple regressions each (estimated to take approximately an hour
to execute). In ope test, an assumed reasonable correlation threshold resulted in a overloaded server, with tasks
transmitting more than 8MB of return data. Tuning return results for a Smith-Waterman DNA sequence comparison
can be even more difficult — a short test run that precomputes sample similarity scores is often required to estimate
a reasonable threshold. Furthermore, when an application is tuned to return more results, work is being moved
from the tasks to the server because the returned results require postprocessing to remove extraneous “significant”
results. In small numbers this may not seem an issue; in a case with 600,000 participants, the postprocessing quickly
becomes problematic.

6 Platform Specifics Matter

In this section, we consider how characteristics of the design and implementation of the distributed computing
platform can influence the security attributes of a system. In particular, we address task allocation mechanisms,
connection characteristics, and parameter settings. We also consider participant demographics: those aspects of
participant connection and computer use patterns that affect reachability, reliability, and efficiency. We show that
the current inability to effectively blacklist malicious participants combined with a distribution mechanism that
allows automated collection of both usernames and tasks leaves some systems vulnerable to large scale collusion.
Indeed, download patterns of users of the largest of the current systems, SETI@Home, already demonstrate the
potential for hoarding, i.e., the individual aggregation of thousands of tasks.

6.1 Push versus Pull: Models for Task Distribution

There are two basic mechanisms for distributing work to participants: a proactive “push” model in which the server
assigns tasks to participants and dispatches those tasks, and a passive “pull” model in which tasks are dispatched
at the request of the participant. The term push is not entirely appropriate because the server can only initiate
communication with a participant who has a static IP address. Instead, servers implementing this model queue

7

assigned tasks which are subsequently dispatched when the participant initiates communication. The important
distinction is that participants in a pull model initiate task acquisition while participants in a push model must wait
for tasks to be dispatched.

The choice of push versus pull is largely one of control versus efficiency. Push model servers retain greater control
over the assignment of tasks, allowing for a more widespread distribution of tasks among available participants. Push
servers can also assure that no username has multiple outstanding tasks, valuable for ensuring that redundantly
dispatched tasks are assigned to different usernames. Pull servers, on the other hand, are attractive because they
utilize participant processing resources more efficiently. Because distribution of tasks is by request in a pull system,
factors such as participant machine speed, accessibility, availability, and reliability are accounted for automatically
— participants with sufficient resources who connect regularly can download and concurrently execute several tasks.
Moreover, the server does not require complex scheduling and distribution algorithms. The pull system is also
work-conserving — a participant ready for new work will not wait to receive work.

Although both models have been used in practice, two of the largest current platforms, SETI@Home and Fold-
ing@Home, both use pull model servers.

6.2 Participant Demographics

Remote execution environments, participant computers, and the owners of the computers represent are very im-
portant aspects of any distributed platform. As such, the characteristics of each of these aspects have a significant
influence on system design and configuration parameters. Three of the most important characteristics are accessi-
bility, reliability, and availability.

Accessibility refers to the ease with which a particular participant can be contacted. Two factors influencing
accessibility involve connection type — whether a participant has a continuous broadband connection and, if so,
whether a static IP address has been assigned. Users with static IP addresses are highly accessible, facilitating server
initiated communication and large data transfers. Broadband users who receive IP addresses via DHCP are also
accessible, although server initiated contact is constrained. Because broadband users can retain their IP addresses for
days at a time, the server will likely succeed in initiating communication within a reasonable interval after receiving
a communication from the participant. Unfortunately, while the proportion of users with broadband access is
increasing, dial-up connections still dominate . According to the most recent survey released in February 2003 by
the UCLA Center for Communication, 75% of Internet users connected to online services via telephone modem while
only 17% connected via broadband [4]; similar results were reported by the UK Office of Telecommunications {3].
For dial-up users, accessibility is influenced primarily by the length of time between connections. Many distributed
compute clients are coded to communicate transparently with the server when the participant computer initially
goes online.

Reliability and availability (i.e., processor availability) refer to the frequency with which results are returned and the
proportion of host processor time available for execution of task code. Reliability is not a reflection of the goodness
of returned results, but only whether results are returned at all. Factors influencing reliability and availability
include whether the computer is owned by a business or an individual, usage patterns of the primary operator, and
machine performance (e.g., a relatively slow processor with limited graphics hardware may take days to complete a
task that would require only a few hours on a better equipped machine).

Participant demographics influence system security by dictating important system parameters and by determining
the efficacy of proposed security solutions. In terms of design decisions, demographics can negate the purported
advantages in control afforded by a push model, and in particular the ability to balance the distribution of tasks.
For example, systems in which participants have high accessibility, availability, and reliability can count on frequent
communication with the server and thus sufficient task dispatch rates. Since few tasks timeout and participants are
accessible, distribution patterns will to a great extent match those intended by the server. Systems experiencing
less favorable demographics will find that task distribution shifts to participants with better characteristics as tasks
originally assigned or dispatched to slower machines timeout and are subsequently reassigned.

With regard to proposed security mechanisms, demographics can affect the performance of some counterattack
strategies. Consider, for example, the Mersenne prime search mentioned in Section A and the associated strategy
described in [36] to harden this application. The strategy is to share the work of computing IV tasks among K
participants, where K > N, so that redundancy increases the likelihood of the owner detecting malicious behavior.

8

To further enhance the strategy, the server can reassign the tasks to participants at random times?. In theory, this
counterattack strategy is effective; in practice, however, its performance is dictated in large part by the demographics
of the participants. The server can designate a priori to a participant the point in the computation that a partial
result is to be returned. However, the server’s ability to retrieve that result and reassign to a different participant
is affected by the accessibility of the two participants. The time required to perform the entire computation is
likely to increase as a result. Event if demographics do not affect the efficacy of a countermeasure, potential decline
in performance must be considered. In general, the architect of any security mechanism that requires significant
communication with the server would be wise to understand well the influence of demographics.

6.3 Blacklisting (The Participant Authentication Problem)

Sarmenta [32] points out the difficulty of blacklisting participants. Specifically, participants cannot be reliably
identified using IP or email addresses. In the former case, many participants receive temporary addresses from their
ISP via DHCP, and even static IP addresses can be forged® — replies from the server would be sent to the forged
address, but an adversary with knowledge of the registration process (say from performing a legitimate registration
earlier) could anticipate the replies necessary to complete the registration. Email addresses can also be forged,
although this is unnecessary since services such as Yahoo provide free email addresses in quantity*. Moreover,
even addresses that can be bound to a specific organization are of little help since an adversary may be using a
compromised machine as a base for launching an attack. Requiring more detailed personal information such as a
social security number or postal address is likely to discourage many potential volunteers.

The problems of authentication in general, and for users in a web setting in particular, have been well studied (e.g.,
see [16] for a survey of web authentication measures). The authentication required for blacklisting, however, has an
added twist. Most authentication protocols involve a party that wishes to gain access to a restricted resource, and
thus wants to be authenticated. In our context, an adversary does not want to be authenticated — the adversary
gains from usernames than cannot be bound to personal identity. Participants already have access to the resource,
so the onus is on the supervisor to prove who users are not, rather than who they are.

The bottom line is that in the absence of a reliable and ubiquitous technology for binding usernames to real people,

usernames, rather than individuals, are all that can be removed from a computation.

6.4 Cumulative Effects: The Likelihood of Collusion

There is a general assumption among the papers that examine securing distributed computations that the probability
of colluding participants is low. If one is considering the likelihood that distinct adversaries act in concert, then
this may be true. In the present context, however, collusion involves multiple participants, not necessarily multiple
adversaries. This is an important distinction because the probability of a single individual controlling several tasks
is far from remote. Several commercial ventures, for example, have solicited participants from large institutions
via packages through which credits gained from task execution are collectively donated to the institution or to
charitable causes. A single malevolent systems administrator at such an institution could conceivably command
the entire pool of participant nodes for a computation. If such administrators were the only individuals capable of
controlling several participants, this might be acceptable. Unfortunately, as we show next, hoarding participants is
relatively easy. .

An adversary can gain control of a significant number of participants either by obtaining multiple usernames or
through a single username that is able to obtain multiple tasks. An adversary holds the greatest advantage if able to
do both, and he or she can in many of the systems currently in place. Since computation supervisors have no effective
means of binding usernames to real people, obtaining usernames is trivial. Several of the registration procedures
we tested, for example, required nothing more than downloading a registration program and entering the desired

% Although this enhancement does not appear in the paper, it was discussed during presentation of the original strategy.
3There is also the practical issue of requiring that potentially unsophisticated PC owners determine whether their IP
address is static.

" %Yahoo and some similar sites have recently implemented measures to prevent users from using scripts to collect thousands
of email addresses, a technique widely used by spammers. These measures rely on reverse Turing tests [41] and have lowered
the number of email requests at Yahoo by 90%. Still, there is no mechanism in place to prevent a determined adversary from
manually collecting as many email addresses as desired.

9

username. Preventing a single username from gaining multiple outstanding tasks is possible, but can significantly
decrease computational capacity. SETI@Home, for example, receives a great deal of work from individuals who
execute multiple tasks concurrently. As of this writing, SETT’s top ten contributors (of over 4.6 million participants)
have completed over 11.5 million tasks, or more than 1% of their entire output. The top individual user has completed
over 3 million tasks during the approximately 1600 days that SETI@Home has been operating (since March 1, 1999)
for an average of approximately 1900 tasks completed each day. The potential for collusion is magnified by the
ability to acquire usernames and download tasks via automated scripts.

Download statistics for SETI@Home indicate that such hoarding could evade detection. Anecdota indicate that the
number of new usernames requested from SETI@Home in any 24 hour period varies widely, with as few as 1100
"and as many as 5100 per day observed in recent weeks. An adversary using a script to obtain 300 usernames per
day may go undetected. An inordinately large numb=r of requests is likely to be detected, but detection in this
case is useless without any means of identifying which of those requests are generated by an adversary®. Regarding
usernames with multiple tasks, consider that SETI@Home receives about 6 requests for tasks every second. If an
adversary with several usernames requests a task once every 5 seconds, the adversary can in theory gather about
17000 tasks in 24 hours. Doing so would raise the average rate of requests seen at the server from 6 per second to
only 6.2 per second. Fortunately, SETI@Home has validation inherent in their application — various regions of the
sky are visited multiple times, so forged signals returned and good signals found but not returned will eventually
be detected. Most other applications do not enjoy this advantage.

If redundancy is the primary means of securing a computation, then collusion is especially effective if an adversary
is able to obtain redundant pairs of tasks. This attack is facilitated in many systems by the timecut values dictated
by participant demographics. Although data concerning some of these parameters is difficult to obtain, it is not
unreasonable to expect that users with dial-up connections require longer timeout values on average. However, a
longer timeout provides an adversary with a larger window of time in which more tasks can be requested with the
specific intent of obtaining redundantly assigned tasks. If the adversary is able to obtain redundant tasks within
the timeout window, the ability to disrupt the computation via that specific task is assured.

Given that blacklisting is not possible and that preventing the assignment of multiple outstanding tasks to a single
username may not be practical, we instead focus on ways in which the ability of the adversary to hoard tasks can be
significantly slowed. We propose that automated hoarding be hampered by employing reverse Turing tests (RTTs)
and memory bound functions.

Traditional Turing tests [37] involve a person trying to prove to another person that he or she is human rather than
machine. In an RTT, a person tries to prove to a computer that he or she is human. The CAPTCHA project [41, 40]
at Carnegie Mellon University is one of the more recent studies in this area. Although the accuracy of these tests
is by nature difficult to verify formally, RTTs demonstrate great promise. Accurate RTTs can be valuable in the
our context as a means for preventing the automated downloading of usernames and for preventing the automated
downloading of many tasks in a short period of time. Moreover, RT'Ts can potentially accomplish this goal with
minimal disruption to honest participants. One of the tests developed by the CAPTCHA project, for example,
displays a distorted image of several words and asks the user to identify three of the words. Asking a participant
for 15 seconds to complete such a test is reasonable — no technical knowledge is required nor the recollection or use
of a password. Most importantly, RT'Ts are an imposition only to someone attempting to obtain many usernames.
Clearly, RTTs do not eliminate the threat of an adversary obtaining multiple usernames, but the task is made more
difficult and time consuming because the process cannot be automated.

Memory bound functions (MBFs) [5] are functions that are intended to evaluate at approximately the same speed
on most currently used systems. As their name suggests, MBFs achieve this goal through the use of operations that
require continual memory accesses. Although processor speeds can vary significantly, processor-memory bus speeds
of machines built in the last five years vary by a factor of approximately two. MBFs can be used in our context to
reduce the rate at which an adversary can gather usernames and tasks on a single machine, forcing the adversary
to execute tasks on a network of workstations in order to achieve disruption in a reasonable amount of time. If,
for example, a username is not registered and a task is not dispatched unless the result of a fifteen minute memory
bound function is completed and returned, then the ability to hoard tasks is impaired. Since computation of the
MBEF is transparent to the user, the imposition on legitimate users is minimal. Unfortunately, MBF's make it difficult
for legitimate users to execute several tasks concurrently. We feel, however, that it would not be unreasonable to
require that a user wishing to obtain a large number of outstanding tasks identify himself or herself to the supervisor
of the computation through more trustworthy means.

Of course someone using a script to obtain thousands of usernames at once would likely be detected as well as stopped.

10

7 Redundancy

In some cases redundancy may be the only realistic security measure available to a distributed metacomputation.
Indeed, to date almost every proposed solution revolves around some form of redundancy, whether by generating
execution traces, using ringers, or applying partial redundancy in various schemes. Redundancy is not a panacea,
however. For many computations redundancy is either inefficient or unnecessary. For those computations Supervisors
should understand the underlying assumptions on which a redundant solution is based.

First, there are several computations for which redundancy is either cost ineffective or unnecessary. Using redundant
tasks in a DES key search, for example, is not cost effective. The only way the computation can fail is if an adversary
finds the key and fails to return it. If there are n tasks and the proportion of tasks under control of adversaries is
p, then in the absence of redundancy the expected nu aber of tasks that need to be executed is given by

ad _ n
n(l-p)) kp*'=—
k=1

1-p
With redundancy, the expected number of tasks is at least 2n. Thus as long as n/(1 —p) < 2n, (i.e., if p < 1/2) the
expected cost is less without redundancy.

Redundancy may not be necessary in cases where application structure provides self correction or in cases exhibit-
ing inherent redundancy in the structure of the application. Consider, for example, the protein folding application
currently being run by Folding@Home. The plausibility of results returned by these tasks is easily checked (the
way which this is done is beyond the scope of this paper). Suppose, however, that a falsified result passes through
this filter, causing a thousand other participants to recenter on the forged configuration. The folding application’s
stochastic nature ensures that the thousand trials quickly decorrelate. The trials will independently sample very
different portions of the configuration space. Furthermore, consider that a given protein folds into a unique con-
figuration. Since this configuration minimizes free energy for its particular string of amino acids, given any initial
configuration of the protein the free-energy minima will eventually be reached. Regardless of the increased time to
reach this minima, the computation will succeed. Thus, protein folding is inherently self-correcting. The decision
to use redundancy in this case depends on the perceived cost of the increased time required to reach a solution.
On the other hand, any Monte Carlo method is resilient to a small proportion of bad results and thus may not be
expected to benefit from the increased costs of redundantly assigned tasks.

We now consider the conditions for which redundancy may be beneficial. First, an application should consist of tasks
and overall computation results that are not easily verified; otherwise, there is no need for redundancy. Second, the
supervisor of the computation should be willing to trust that matching results are valid or, if using voting schemes,
that the majority result is correct. Otherwise the supervisor must validate each result and is therefore performing
the redundancy himself.

The supervisor who places trust in matching or majority results, however, has based her solution on two implicit
assumptions, neither of which may be valid. First assumption is that the probability of receiving matching incorrect
answers is low. In the absence of collusion, this is likely the case. However, as discussed in Section 6.4, the odds of
receiving matching incorrect answers are far from negligible, given that current platforms allow a single individual
to acquire an effectively unlimited number of usernames and to download several thousand tasks.

The second assumption is more subtle and concerns the methods by which mismatched answers are handled. When
mismatched answers are received, the next step is naturally to assign the task to another participant. Of course
this further increases the number of tasks required for the computation as well the time® required to complete the
computation. In assigning the task to an additional participant,however, there is the implicit assumption that this
third participant is different from either of the first two. This is problematic because, as discussed in Section 6.3,
supervisors of computations have no knowledge of the identity of the person with whom they are communicating.
The misconception is that when redundancy is employed, each task instance is assigned to a different person. Because
there is no means of reliably identifying adversaries there is no guarantee that tasks are not being reassigned to the
same adversary regardless of the level of redundancy.

So the question that really should be considered when thinking about using redundancy is this: what are the
implications of using redundancy in an environment in which there may be many participants under the control of
adversaries and in which the supervisor of a computation cannot be sure to whom they are sending tasks!

5Some computations, such as SETI@Home, are ongoing so one can argue that the additional time is inconsequential. Most
commercial computations, however, need to be completed in time to satisfy the customer.

11

Finally, the use of redundancy can impair an application more than if tasks had been assigned only once. Consider,
for example, applications in which a select few tasks will contain the results of primary interest. In the absence
of redundancy, this type of application can only be disrupted if an adversary is assigned one of the distinguished
tasks. Redundancy, however, opens the computation to two attacks. First, regardless of which tasks are assigned
an adversary can fail to return its assigned tasks. Since task results are not accepted until they are matched, the
completion of this task is delayed for at least the task timeout length, and possibly longer (depending on how
quickly the reassigned task is completed). Moreover, the adversary will not be identified as an adversary since
he or she will not have returned a bad result. The second attack involves sending a forged good result. Such a
result creates a mismatch, which again causes the task to be reassigned. In this case, the username can be removed
from the computation, but as we have shown this provides little disincentive to an adversary capable of hoarding
usernames. Both of these attacks increase both compute and time costs, as well as create additional work for the
server. Moreover the attacks magnify the impact ‘0 an adversary, because the attacks force the assignment of
another task.

To be clear, we do not discourage the use of redundancy when security needs justify the additional costs. However
supervisors should be cognizant of the potentially fallacious assumptions on which redundancy is based and aware
of the implications of its use.

8 Conclusions

In this paper, we discussed several security issues unique to distributed metacomputations. In the context of real
applications, we have shown that subtleties in the structure of applications, in their implementation, and in the
underlying computation platform can undermine the intent of security protocol mechanisms. We have shown that, as
currently designed, many distributed computing platforms are unsettlingly vulnerable to collusion from participant
nodes under the control of a single adversary. We presented specific recommendations with respect to the security
issues raised, including the use of reverse Turing tests and memory bound functions to prevent an adversary from
automated acquisition of usernames and tasks. Finally, we discussed the use of redundancy, specifically noting that
in many cases redundancy is unnecessary or cost inefficient. Even worse, redundancy can leave a system vulnerable
to attacks that would not be possible in the absence of redundancy. We reiterate that our purpose in discussing
these issues is not to provide a road map for adversaries; rather, we wish to create a general awareness of these
issues and to provide a common and realistic set of assumptions on which future research efforts can be based.

Acknowledgements

The authors wish to thank Dave Anderson and Jeff Cobb of the SETI@home project for providing us with statistics
regarding the SETI@home platform. We thank Dr. Vijay Pande of the folding@home project for. his helpful
discussion regarding the folding@home implementation. We thank Doug Blair, Dale Newfield, Sean Cier, and
Dustin Lucien, all formerly of Parabon Computation; Inc, for helpful discussions regarding implementations details
of Smith-Waterman sequence comparisons, protein folding, and graphic rendering, respectively. We especially thank
Art Charlesworth for his insights during the writing of this paper.

References

(1] The SETI@home Problem, September 2000.

[2] Personal conversation (email) with Jeff Cobb, July 2003.

[3] Consumers’ use of internet: Oftel residential survey Q11 november 2002, January 2003.
[4] The UCLA Internet report: Surveying the digital future, year three, February 2003.

[5] M. Abadi, M. Burrows, T. Wobber, and M. Manasse. Moderately hard, memory-bound functions. In Proceedings
of 2003 Network and Distributed Systems Security Symposium, pages 25-40, San Diego, California, February
2003.

(6] D. Anderson, J. Cobb, E. Korpela, M. Lebofsky, and D. Werthimér. SETI@home: An experiment in public
resource computing. Communications of the ACM, 45(11):56-61, November 2002.

12

[7] J. Baldeschwieler, R. Blumofe, and E. Brewer. Atlas: An infrastructure for global computing. In Proceedings
of the Seventh ACM SIGOPS European Workshop on System Support for Worldwide Applications, 1996.

[8] A. Baratloo, M. Karaul, Z. M. Kedem, and P. Wyckoff. Charlotte: Metacomputing on the web. In Proc. of
the 9th Int’l Conf. on Parallel and Distributed Computing Systems (PDCS-96), 1996.

[9] A. Bissett and G. Shipton. Envy and destructiveness: understanding the unconscious motivations of the
computer virus makers. In Ethi-Comp Conference Proceedings, 1998.

[10] A. Bissett and G. Shipton. Some human dimensions of computer virus creation and infection. International
Journal of Human Computer Studies, 52:899-913, 2000.

(11] T. Brecht, H. Sandhu, M. Shan, and J. Talbot. Paraweb: Towards world-wide supercomputing. In Proceedings
of the Seventh ACM SIGOPS European Worksh: 2 on System Support for Worldwide Applications, 1996.

[12] J.W. Bruce. A really trivial proof of the Lucas-Lehmer test. American Mathematical Monthly, 100:370-371,
1993. . :

[13] P. Capello, B. Christiansen, M. Ionescu, M. Neary, K. Schauser, and D. Wu. Javelin: Internet-based parallel
computing using Java. Concurrency: Practice and Ezperience, 9(11):1139-1160, 1997.

(14} N. Draper and H. Smith. Applied Regression Analysis. John Wiley & Sons, 1966.

[15] The Folding@home Project. Stanford University.
http://www.stanford.edu/group/pandegroup/cosm/.

[16] Kevin Fu, Emil Sit, Kendra Smith, and Nick Feamster. Dos and don’ts of client authentication on the web. In
Proceedings of the 10th USENIX Security Symposium, August 2001.

[17] Genbank. http://www.ncbi.nlm.nih.gov/Genbank/
GenbankOverview.html.

[18] The Great Internet Mersenne Prime Search.
http://www.mersenne.org/prime.htm.

[19] P. Golle and I. Mironov. Uncheatable distributed computations. In Proceedings of the RSA Conference 2001,
Cryptographers’ Track, pages 425-441, San Francisco, CA, 2001. Springer.

[20] P. Golle and S. Stubblebine. Secure distributed computing in a commercial environment. 2001.
http://crypto.stanford.edu/~pgolle/papers/payout.html. '

[21] F. Hohl. An approach to solve the problem of malicious hosts. Technical Report TR-1997-03, Universitéit
Stuttgart, Fakultdt Informatik, Germany, March 1997.

[22] Fritz Hohl. Time Limited Blackbox Security: Protecting Mobile Agents From Malicious Hosts. In Giovanni
Vigna, editor, Mobile Agent Security, pages 92-113. Springer-Verlag: Heidelberg, Germany, 1998.

[23] Fritz Hohl. A protocol to detect malicious hosts attacks by using reference states. Technical Report TR-1999-09,
1999.

[24) L. Hunter. Molecular biology for computer scientists. In L. Hunter, editor, Artificial Intelligence and Molecular
Biology, AAAI Press Series, chapter 1, pages 1-46. MIT Press, Cambridge, MA, 1993.

[25] E. Korpela, D. Werthimer, D. Anderson, J. Cobb, and M. Lebofsky. SETI@home——mas;ively distributed
computing for seti. Computing in Science and Engineering, 3(1):78-83, January/February 2001.

[26] Y. Minsky, R. van Renesse, F.B. Schneider, and S.D. Stoller. Cryptographic support for fault-tolerant dis-
tributed computing. In Seventh ACM SIGOPS European Workshop, pages 109-114, Connemara, Ireland, 1996.

[27] F. Monrose, P. Wyckoff, and A. Rubin. Distributed execution with remote audit. In Proceedings of the 1999
ISOC Network and Distributed System Security Symposium, pages 103—113, 1999.

[28] S. Needleman and C. Wunsch. A general method applicable to the search for similarities in the amino acid
sequence of two proteins. Journal of Molecular Biology, 48:443-453, 1970.

[29] N. Nisan, S. London, O. Régev, and N. Camiel. Globally distributed computing over the internet—the Popcorn
project. In Proceedings of the International Conference on Distributed Computing Systems, pages 592601,
Amsterdam, Netherlands, May 1998.

[30] Tomas Sander and Christian F. Tschudin. Protecting Mobile Agents Against Malicious Hosts. In Giovanni
Vigna, editor, Mobile Agent Security, pages 44-60. Springer-Verlag: Heidelberg, Germany, 1998.

13

(31] L. Sarmenta and S. Hirano. Bayanihan: Building and studying web-based volunteer computing systems using
java. Future Generation Computer Systems, 15(5/6), 1999.

[32] L.F.G. Sarmenta. Sabotage-tolerance mechanisms for volunteer computing systems. In Proceedings of the
ACM/IEEE International Symposium on Cluster Computing and the Grid, Brisbane, Australia, May 2001.

[33] Michael R. Shirts and Vijay S. Pande. Atomistic protein folding simulations on the submillisecond time scale
using worldwide distributed computing. Wiley, 86(22), May 2001.

[34] Michael R. Shirts and Vijay S. Pande. Mathematical analysis of coupled parallel simulations. Physical Review
Letters, 86(22), May 2001.

(35] T.F. Smith and M.S. Waterman. Identification of common molecular subsequences. Journal of Molecular
Biology, 147:195-197, 1981.

[36] D. Szajda, B. Lawson, and J. Owen. Hardening functions for large-scale distributed computations. In Proceed-
ings of the 2008 IEEE Symposium on Security and Privacy, pages 216-224, Berkeley, CA, May 2003.

[37] A. Turing. Computing machinery and intelligence. Mind, 59(236):433-460, 1950.

[38] Giovanni Vigna. Protecting mobile agents through tracing. In 3rd ECOOP Workshop on Mobile Object Systems,
Jyvaskyld, Finland, 1997.

[39] Giovanni Vigna. Cryptographic Traces for Mobile Agents. In Giovanni Vigna, editor, Mobile Agent Security,
pages 137-153. Springer-Verlag: Heidelberg, Germany, 1998.

[40] L. von Ahn, M. Blum, N. Hopper, and J. Langford. CAPTCHA: Using hard Al problems for security. In
Proceedings of Eurocrypt 2008, 2003.

[41] L. von Ahn, M. Blum, and J. Langford. Telling humans and computers apart (automatically). Communiations
of the ACM, to appear.

[42] M. Waterman. Introduction to Computational Biology: Maps, Sequences, and Genomes. Interdisciplinary
Statistics. Chapman & Hall, 1995.

[43] Bojan Zagrovic, Eric J. Sorin, and Vijay S. Pande. Beta hairpin folding simulations in atomistic detail using
an implicit solvent model. Journal of Molecular Biology, 313(2):151-169, 2001.

A Example Application Details

This section presents examples of applications to which the distributed computation technique has been applied.
We do not discuss these applications in great detail, but instead provide an overview sufficient to illuminate general
characteristics. These applications serve as a basis for the topics developed in Sections 5 and 6. Readers interested
in more detailed descriptions of these applications are encouraged to consult the references provided for each.

A.1 Exhaustive Linear Regression

Regression [14] is a technique for fitting experimental data to a (possibly N-dimensional) function. It is used to
determine the relationship between one or several predictor variables and a predetermined response variable that
are observed in an experimental setting. Data observed in this fashion can be expressed by vectors of the form

(yi,fb‘u,xiz,l'is, veey l‘iN)

where 1,9, ...,z represent the predictor variables, y is the response variable, and z;; is the value of z; in the
ith observation. We assume k such observation vectors where k > N. The adjective linear refers to the assumption
that the predictor variables are (possibly) related to the response variable y through an equation of the form

g=a+bzy +bz2+... +bnznN, (2)

which defines a hyperplane. The parameters a and by,...,by are determined via least squares methods [14]. The
goodness of fit of a specific hyperplane (i.e., the least squares estimates for a and the b; following from a particular
subset of the z1,2z2,...,Zx) is determined by measuring the collective discrepancies between the predicted and

14

observed experimental values, i.e., y; and §. For many reasonable measures of “discrepancy”, formulas for finding
the best fitting curve are well known and relatively easy to apply. More difficult, however, is determining the class
of curve against which to fit and the smallest subset of predictor variables that significantly influences or determines
the value of the response variable.

Exhaustive regression addresses the latter concern in a brute force manner. All possible combinations of predictor
variables are tested in order to determine the single combination of predictors that produces the “best” fit. The
process is computationally intensive — if there are N predictor variables, then there are 2V — 1 (the combination
in which no predictors are present is not considered) possible regression equations. Fortunately, the information
required to fit a curve to any single combination of predictors (i.e., performing an individual regression, the ele-
mentary operation of the tasks for this application) is a small set of statistics based on the observed data and is
identical for each potential combination. Thus the problem is easily parallelized — specifying a task amounts to
describing the sets of combinations of predictors on which a participant should perform regressions. Significant re-
sults are determined according to goodness of fit, with a goodness threshold determined a priori by the computation
supervisor.

A.2 Protein Folding

Folding” is the process by which a protein, consisting of a string of amino acids, takes on the physical configuration
that gives the protein its biochemical functionality. A protein’s folded structure is predetermined by its amino-acidic
composition, but determining this configuration a priori is quite difficult. In reality, proteins fold quite rapidly —
on the order of a microsecond. However, the computational requirements for a complete simulation of the protein
folding process limits simulation to just one nanosecond per CPU-day [15]. As a result, simulation of a protein fold,
intractable using conventional computing power, is well-suited for distributed computing platforms.

A protein folds in such a way that the total free-energy of the resulting structure is minimized. If every possible
structure is simulated and the associated free-energies calculated, the structure with the least free-energy is an
appropriate prediction of the protein’s ultimate folded structure. Molecular dynamics (MD) simulations are used
to solve this problem of minimizing free-energy. Each MD simulation is initialized with a set of coordinates that
describes the location of atoms in a molecule and the initial velocities of each atom. The structure of each molecule
obeys Newtonian mechanical rules as the system changes over time. At regular time intervals, molecular snapshots
are taken; collectively, these snapshots form a molecular dynamics trajectory that describes the evolution of the
folding process.

Folding@Home?, a distributed computing project run by the Pande Group at Stanford University, seeks to parallelize
the folding process {33]. In this context, many simulation trials comprise a folding series. The trials within a series
are distributed over thousands of participants — all participants start with the same initial location coordinates, but
each participant simulates a different fold using random thermodynamic forces [43]. By collecting many independent
folding series into an ensemble, Folding@Home is able to simulate the large-scale folding process in an efficient
manner.

The process of folding takes a protein through several metastable states before producing a final configuration. A
transition from one of these intermediate states to another occurs as a molecule passes a free energy barrier, where
a significant energy peak is observed. When a trial transitions (i.e., crosses a free energy barrier), all simulations
in the associated series are restarted using the molecular coordinates of the transitioned trial. Each realigned trial
continues using a unique random sequence of thermodynamic forces acting upon the molecules. In this way, the
entire configuration space is sampled. This scheme permits Folding@Home to achieve a linear speedup in simulation
time [15].

A.3 Smith-Waterman Sequence Comparisons

We describe here the Smith-Waterman dynamic programming algorithm [35] for genetic sequence comparisons. The
sequences that biologists study consist of either nucleotide bases (occurring in DNA fragments) or amino acids (the
building blocks of proteins). For DNA sequences, the underlying alphabet is ¥ = {4, C,T, G} representing the

"The reader interested in the biology of protein folding should consult [24].
8For a comprehensive description of the Folding@Home methodology, the interested reader should consult [15, 34, 33, 43].

15

nucleic acids adenine, cytosine, thymine, and guanine. The underlying alphabet for protein sequences consists of 20
symbols, each representing an amino acid used in constructing proteins.

Consider a sequence A = ajay...a, over £. Sequences evolve primarily in three ways: an element of a sequence
is removed (a deletion), an element is inserted (an insertion), or an existing elemert is transformed into a different
element (a substitution). As depicted in Figure 1, biologists track evolutionary changes by writing the original
sequence above the new sequence with appropriate positions aligned. In Figure 1(a), a2 undergoes a transformation
from T to A; in (b}, a4 is deleted with -’ representing the gap; in (c), the element G is inserted into the second
position. Figure 1(d) and (e) represent two example evolutions involving several mutations — both cases consist
of exactly the same sequence of elements but with different alignments. It is important to note that there are
many different possible alignments of two sequences. For example, two sequences of length 1000 have approximately
7.03 x 10783 distinct alignments!

A: CTGTTA A: CTGITA A C-TGTTA A: C-TGT--TA-- A: CT-GT--T-A
B: CAGTTA B: CTG-TA B: CGTGTTA B: CTA-TGCT-CG B: CTA-TGCTCG

(a) (b) (c) (d) (e)
Figure 1: Example DNA Sequences

To measure the goodness of an alignment, a scoring function is weighted to reflect whether symbols in the same
position in two different sequences match. Similarly, a gap function determines the penalty assessed for inserting
or deleting an element to obtain an alignment. The similarity S(A, B) of sequences A and B is defined to be the
maximum score over all alignments between the two sequences. Although the number of alignments is huge, a
dynamic programming algorithm developed by Needleman and Wunsch {28], and later augmented by Smith and
Waterman [35], allows the similarity of sequences of length n to be determined in O(n?) time.

Furthermore, one may consider local alignments, i.e., the segments of each sequence that are most similar.. Because
there are (g) (’;) different sequence alignments, the amount of compute required to consider all possibilities is
enormous. Waterman notes that computing local alignments for two length n sequences takes O(n®) time using the
algorithm above for computing S [42]. Fortunately, a dynamic programming technique reduces the required time

considerably.

A researcher conducting a Smith-Waterman local sequence comparison has thousands of sequence segments culled
from the genome of a particular organism. The researcher compares this information to the archived sequence
information from a large public database such as the National Institutes of Health GenBank database [17], which
as of the date of this writing lists almost 23 billion bases in over 18 million sequence entries. The compute job
compares each of the thousands of sequence segments with each of the millions of sequences in the database.

Parabon Computation Inc. implemented a Smith-Waterman sequencing application. The application divides both
the NIH database and the researcher’s sequences into groups of approximately 100 sequences. Participants are sent
the sequences {with job specific sequence identifiers) along with the scoring and gap functions. Participants then
compare all pairs of sequences, returning the identifiers of pairs that score above a precomputed similarity threshold.
Of the 10000 or so comparisons run by each participant, only about 30 are expected to be significant. These are
returned to the researcher for further analysis.

A.4 SETI@Qhome

The SETI@Home project attempts to detect signals of extraterrestrial origin. Their efforts require a significant
amount of compute because the parameters of an extraterrestrial signal are unknown and because required processing
costs rise in accordance with increased search sensitivity.

SETI believes that an alien civilization generating a signal with the intention of contacting other civilizations would
choose a narrowband signal that could be easily distinguished from the wide band celestial background noise.
Obviously, many factors are unknown, such as the bandwidth and frequency of a signal, whether the signal will

16

be pulsed, and if so the pulse period. Moreover, because of the rotation of the earth and the motion of a signal’s
planet of origin relative to the earth, doppler shifts would likely cause a narrowband signal to quickly drift out of
band. Thus potential signals are tested according to several doppler drift rates. Finally, any potential alien signal is
tested for celestial origin. As an example, radio frequency interference can be identified but the detection algorithms
require nontrivial processing. Given the large number of potential parameters, tasks require from 2.4 to 3.8 trillion
floating point operations — about 10 to 12 hours on a 500MHz PC.

SETI@Home performs a number of postprocessing steps on potential signals returned from tasks. Much of this
work is devoted to identifying terrestrial signals. SETI also assigns tasks redundantly (with a factor of 2 or 3) and
performs cross checking. Error rates are typically around 2% (2], though not all errors are the result of malicious
activity. Some errors are introduced via the communication protocol, and others result from processor, disk, and
memory errors. Although such errors in general oceur with low probability, SETIQHome generates such a large
number of floating point operations that even with etror rates as low as one in 10'® machine instructions, several
will be seen on any given day.

The SETI@Home core computing platform consists of three servers. One server holds a science database that
contains time, sky coordinates, frequency, and other statistics for each task as well as the relevant parameters of
potential signals returned by participants. A second server holds a user database that contains information on
SETI@Home participants, the number of tasks completed, last connection time, etc. The third server stores tasks
that are waiting to be dispatched along with the results of completed tasks. These servers communicate with the
participants via HT'TP.

A.5 Great Internet Mersenne Prime Search (GIMPS)

The Great Internet Mersenne Prime Search is an ongoing project run by Entropia.com [18]. The nth Mersenne
number, denoted M, is defined by M, = 2" — 1. A Mersenne number can only be prime if n is prime®, but the
primality of n is not a sufficient condition for the primality of M, (e.g., Me7 is not prime). The Lucas-Lehmer
Theorem [12] states that M,, is prime if and only if S(n — 1) =0 (mod M,,), where

4 k
S(k+1)={3(k)2—2 ZC:

Thus a GIMPS task consists of checking a single candidate. Considering that the most recent GIMPS success was
the discovery of the Mersenne prime 2'3:466:917 _ 1 the number of iterations required in such a task is significant.

9[f m divides n, then (2™ — 1) divides (2" — 1).
17

27

Appendix B

Collusion Resistant Redundancy

Collusion Resistant Redundancy for Distributed Metacomputations

Doug Szajda Arthur Charlesworth

Barry Lawson

Jason Owen Ed Kenney

University of Richmond
Richmond, Virginia
{dszajda, acharles, blawson, wowen, ekenney2 } @richmond.edu

Abstract

Many recent large-scale distributed computing applica-
tions utilize spare processor cycles of personal computers
that are connected to the Internet. The resulting distributed
computing platforms provide computational power that pre-
viously was available only through the use of expensive su-
percomputers. However, distributed computations running
in untrusted environments raise a number of security con-
cerns, including the potential for disrupting computations
and for claiming credit for computing that has not been
completed (i.e., cheating). These concerns are often ad-
dressed by assigning tasks redundantly.

Aside from the additional computational costs, a sig-
nifcant disadvantage of redundancy is its vulnerability to
colluding adversaries, since matching returned results are
rarely verifed. This paper presents a general strategy for
applying redundancy in a manner that provides signifcantly
increased resistance to collusion. Advantages over redun-
dancy include an order of magnitude improvement in the
probability of detecting colluding adversaries, as well as
the ability to effciently identify all colluding participants.
Moreover, this improvement is achieved without an increase
in the amount of computation required by participants, but
instead with a slight increase in bookkeeping overhead. Our
Strategy is tunable—it generalizes simple redundancy and
covers an entire spectrum from simple redundancy to the
most expensive and most secure redundant assignment of
tasks. Finally, our strategy is extensible in the sense that
it does not preclude, and can be augmented by, the use
of some previously proposed strategies for securing dis-
tributed metacomputations.

Keywords: distributed computation, probabilistic verifca-
tion, collusion

1. Introduction

The advent of large-scale distributed computing plat-
forms, consisting of many personal computers connected to
the Internet, provides researchers and practitioners a new
and relatively untapped source of computing power. By
utilizing the spare processing cycles of these computers,
computations are now possible that were once unobtainable
without the use of a supercomputer. In a typical distributed
computation, the computation is easily divisible into inde-
pendent rasks, each of which can be processed by a typical
personal computer in a few hours. A participant downloads
code from the supervisor of the computation in order to es-
tablish an execution environment in which the supervisor
can execute tasks. Each task is assigned and dispatched to a
participant, and upon completion of the task signifcant re-
sults are returned to the supervisor. In this context, provid-
ing a level of assurance for results is diffcult because the
results are obtained by executing tasks in untrusted envi-
ronments. Participants can intentionally or unintentionally
corrupt results, and can attempt to claim credit for work not
completed.

A common technique for securing these computations
is simple redundancy-—assigning each task to two partic-
ipants. In addition to at least doubling the required cost
of computation, simple redundancy is vulnerable to collud-
ing adversaries because supervisors rarely verify matching
returned results (for many applications verifying a task re-
sult requires recomputing the entire task). In the present
context, this is a signifcant weakness, since in many dis-
tributed computing platforms there are no mechanisms in
place to prevent an adversary from obtaining multiple (even
hundreds of) user names and downloading hundreds or even
thousands of tasks'. Detection of colluding adversaries is
diffcult and/or expensive, and moreover detection of an ad-

IThe Search for Extra-Terrestrial Intelligence project conducted by
SETI@Home, for example, has experienced days in which more than 5000
new user names were assigned, and boasts participants who have averaged
more than 1000 tasks completed each day in the four years since the project
began.

SNONORONONG
ONONCNONCNG
9660666

Figure 1. Alternative ways of assigning three
tasks to six participants. Tasks in the top row
are assigned using simple redundancy.

versary provides no information about additional colluding
participants.

Our scheme is motivated by the notion that a supervi-
sor who accepts the increased cost of computation associ-
ated with simple redundancy should receive a better return
on their investment. Specifcally, these same computational
resources can be allocated such that an adversary is much
more likely to be detected, and that detection reveals the
identities of their colluding cohorts. Our mechanism re-
quires no additional computation on the part of the partic-
ipants, and only reasonable increases in bookkeeping costs
for the supervisor.

As a simple example, consider a traveling salesperson
computation involving only three cities, and assume that a
participant can only compute the cost of two circuits. Let
€1,Ca, - - -, Cg denote the six possible circuits. Without re-
dundancy, this would require three participants (each com-
puting the cost of two circuits), so simple redundancy re-
quires six, which we denote by Py, Ps,...Ps. Figure 1
shows two possible ways of assigning each participant two
circuits. Under simple redundancy, each subset is assigned
to two participants, so for example P; and P, act as checks
on each other’s work. If they are both controlled by a sin-
gle adversary, then the costs returned for circuits ¢; and ¢,
are compromised since they can return identical incorrect
results that the supervisor will assume is correct. In this
scheme, P, is the only check on the work of P; and vice-
versa. If in addition Pj is under the control of the adver-
sary, the supervisor will have no knowledge of this even if
she happens to be fortunate enough to detect the malicious
behavior of P; and P.

Consider now the alternative assignment. Here, the work
of P; is checked in part by P, and in part by Ps. If the
cost of ¢; is returned incorrectly and the cost of ¢z is re-
turned correctly, the supervisor knows that Py and P, are
colluding participants. Moreover, the supervisor can deter-
mine whether P; is colluding with P; and P, by check-

ing whether the cost of c3 has been correctly computed.
This additional information is gained without increasing the
computational burden on any of the tasks.

Consider now the probability of detecting the malicious
activity of Py and P» by verifying one full task worth of
work. We assume, for reasons that will be made clear later,
that in the simple redundancy case work can only be verifed
at the task granularity, a constraint present in real distributed
computations. With simple redundancy, the supervisor ver-
ifying a single task at random from the three will detect
the malicious activity with probability 1. In the alterna-
tive scheme, the supervisor is free to check any two circuits
from among the six in ths computation, so the probability
of detection is now 1 — Q = 3. If instead the supervisor
opts to check only a singlé circuit, the probability of detec-
tion becomes %, so the supervisor acheives a detection level
equal to simple redundancy with half the effort.

The strategies presented in this paper represent a spec- .
trum of possible task assignments. At one extreme is sim-
ple redundancy, which is the least expensive strategy, but
provides the least protection from collusion, the smallest
probability of catching colluding participants, and no infor-
mation about the identities of additioral conspirators. At the
other extreme is an assignment strategy we call vertical par-
titioning, which is of theoretical interest but does not scale
to the dimensions of the typical distributed computation.
Vertical partitioning is the most expensive of our strategies,
but provides the greatest protection from colluding adver-
saries, the highest probability of detecting adversaries, and
when detection occurs, the ability to identify all of the col-
luding participants. This is acheived through a distribu-
tion scheme in which part of the work of each participant
is checked by all of the other participants in the computa-
tion. The primary cost of vertical partitioning is bookkeep-
ing overhead—the amount of computation required by the
participants is unchanged. Between these two extremes lies
a wide range of assignments we call clustering. By vary-
ing parameter values, the supervisor can choose the level of
partitioning that is both suited to their specifc application
and provides the desired level of protection.

This protection can be further augmented with the use of
several other recently proposed security measures for dis-
tributed metacomputations. The ringers schemes proposed
by Golle and Mironov [7], and Szajda, et. al. [17] can both
improve the proability of detecting malicious activity and at
the same time decrease some of the costs associated with
our strategy. Some of the credibility based strategies pro-
posed by Sarmenta [?] can be integrated with our scheme
as well.

We note here that our strategy is not applicable to ev-
ery distributed metacomputation. In particular, we require
that tasks can be divided into subtasks, a property absent

from some distributed computations. Sequential computa-
tions, for which the basic model is the repeated iteration of a
function on a small number of inputs, cannot be subtasked
if each task is assigned only a single seed value. Protein
folding and some Mersenne Prime searches, for example,
fall under this restriction.

In addition to the voluminous literature on securing gen-
eral distributed computations, there is a small but growing
body of literature dealing with securing the specifc type of
system considered here (see e.g. [7, 8, 10, 14, 17]. Some
of these [8, 14] describe strategies for intelligently apply-
ing redundancy, including methods for determining apprc-
priate levels of redundancy (i.e. triple, quadruple, etc.) re-
quired to meet application requirements. One [17] discusses
a scheme that applies partial redundancy to sequential com-
putations. None of these works, however, consider the re-
design of redundancy itself. That is, strategies that improve
the performance of a specifc level of redundancy in a man-
ner that increases the probability of detecting malicious ac-
tivity and provides the supervisor with better information as
to the identities of malicious participants.

In addition to presenting our strategy, we provide proba-
bilistic analyses that prove the following:

¢ For a given proportion of participants controlled by the
adversary, the expected number of fasks controlled by
the adversary is identical under each of the strategies.
We say that a task or subtask is controlled by the ad-
versary if she controls both participants who have been
assigned that task or subtask.

o The stability of our strategy is superior in the sense that
the variance of the number of tasks controlled by the
adversary is greatly decreased under our schemes (and
is in fact zero under pure vertical partitioning).

¢ The probability of detection of adversaries who return
matching bad results can be increased by an order of
magnitude when using our strategy.

In addition, we provide effcient algorithms for task assign-
ment and for identifying colluding cohorts once a pair of
colluding adversaries has been detected.

The remainder of the paper is organized as follows. In
Section 2 we present our model of the distributed com-
putations and platforms under consideration and introduce
terminology. Section 3 presents the vertical partitioning
scheme. Though impractical in its pure form, vertical parti-
tioning and the corresponding analyses provide the basis for
the clustering scheme presented in Section S In Section 5 we
show how the ideas of vertical paritioning can be applied in
practice via clustering. We discuss related work in Section 6
and present conclusions in Section 7.

2. The model

We consider parallel applications in which the primary
computation is easily divided into tasks small enough to
be solved by a PC in a “reasonable” amount of time (typi-
cally several hours of CPU time). The tasks are independent
and, in general, consist of one or more subtasks. Sequen-
tial tasks consist of relatively few (often one) subtasks, each
of which requires a long time to complete; non-sequential
tasks consist of many subtasks, each of which completes
quickly [17]. The scheme presented in this paper is ideally
suited for non-sequential tasks. Nonetheless, the scheme is
applicable to sequential tasks provided that the number of
subtasks per task is suffciently large.

More formally, a computation consists of the evaluation
of a function or algorithm f : D — R for every input value
z € D. Tasks are created by partitioning I into subsets
D;, with the understanding that task T; will evaluate f for
every input z € D;. In addition to a subset of the data
space, each task T; is assigned a £lter function g; with do-
main P(R), the power set of R, and range P(f(D;)), where
f(D:) = {f(z)|z € D;}. Forz € D;, f(z) is a signif-
icant result if and only if f{z) € g;(f(D;)). Generality in
the de£nition of g; is necessary for situations in which the
signifcance of a computed value is relative to the values
of f at other elements of D;. For example, the £lter func-
tion for a task in a traveling salesperson computation might
specify that a route is signi£cant if it is among the best £ve
routes computed.

To introduce terminology used to describe the scheme
presented in this paper, consider the example structure of as-
signments of a hypothetical computation from Table 1. As
depicted in (a), the computation is £1st divided into N = 4
tasks. Each task is then divided into 2N — 1 = 7 subtasks.
Then 2N = 8 combinations, each of 2N — 1 = 7 subtasks,
are created (one for each of the 2N = 8 participants) such
that each subtask appears in exactly two combinations (the
details of creating the combinations are presented in Sec-
tion 3). An assignment, i.e., one combination of subtasks,
is then presented to each participant to compute. Moreover,
each term defned above is represented in Table 1 as follows:

o the computation corresponds to the entire table in (a);
o each task corresponds to a column in (a);

o cach subtask corresponds to a single element (e.g., B2)
from a column in (a);

o each assignment to a participant corresponds to a col-
umn in (b).

Note that for simple redundancy a task consists of only one
subtask; in this context, a task, subtask, and assignment are
equivalent.

Table 1. A division of four tasks and associ-
ated assignment of subtasks

Tasks
1 2 1.3 4
A0 ! BO | CO [Do
Al | B1 | Cl | DIl
A2 | B2 | C2|D2
A3 | B3| C3 D3
A4 | B4 | C4 | D4
AS |B5 | C5| D5
A6 | B6 | C6 | D6

(a) N = 4 tasks each divided into 2V —

= 7 subtasks

Participant Assignments
1 2 3 4 5 6 7 8
A0 | A0 | Al | A2 | A3 | A4 | AS | A6
Al | BO | BO| Bl | B2|B3|B4|BS
A2 (Bl |B6 | B6jCO}Cl|C2|C3
A3 | B2.|CO{C4]C4|C5]|C6| DO
A4 | B3| Cl|C5|Dl|D1l|D2|D3
A5 | B4 | C2|C6|D2|D4|D4|DS5
A6 | B5|C3|D0;D3|D5|D6|D6

(b) Assignment of subtasks to the 2N = 8 participants

The computing platform consists of a supervisor — a
trusted central control server or server hierarchy coordinat-
ing many (typically 10* to 107) personal computers in a
“master-slave™ relationship. The slave nodes, or partici-
pants®, are given work assignments by the supervisor. Par-
ticipants download code, typically as a screen saver or ap-
plet, that serves as the local execution environment for work
assignments. Because tasks in a computation are indepen-
dent, communication is necessary (and allowed) only be-
tween individual participants and the supervisor. Partici-
pants receive remuneration, in one of a variety of forms, for
completing their associated work assignment.

We assume the existence of one or more intelligent ad-
versaries (i.e., persons). An adversary possesses signi£cant
technical skills by which he or she can effciently decom-
pile, analyze, and/or modify executable code as necessary.
In particular, the adversary has knowledge both of the algo-
rithm used for the computation and of the measures used
to prevent corruption. Each adversary will intentionally
attempt to disrupt the overall computation in one of three
ways:

2We use the term participant to denote both a node and its owner. The
specifc meaning of a particular usage will be apparent from the context.

o the adversary attempts to cheat, i.e., tries to obtain
credit for work not performed;

o the adversary intentionally returns incorrect results;

¢ the adversary intentionally fails to return signifcant re-
sults.

A single adversary may repeatedly attempt to disrupt the
computation as results are (incorrectly) reported and new
work is assigned. ,

We assume that collusion among multiple adversaries is
possible. Furthermore, we assume it is likely that a single
adversary (person) controls multiple participants (nodes).
In typical applications, there is no current mechanism that
prohibits an adversary from obtaining multiple accounts un-
der the computation (one per node under control of the ad-
versary). By using multiple participant accounts, a single
adversary can gain control of multiple assignments. We as-
sume that the adversary will disrupt the computation only
by compromising those subtasks for which the adversary
controls all copies. That is, if an adversary does not con-
trol all copies of a subtask, then the adversary will correctly
compute that subtask; if an adversary does control all copies
of a subtask, then the adversary will disrupt the computation
using that subtask.

An adversary may be motivated to disrupt a compu-
tation for one of several reasons. If participants receive
some form of recognition (e.g., distinction as a top contrib-
utor of processing hours as in SETI@home [16] or Fold-
ing@home [6]) in exchange for processor time, an adver-
sary may attempt to cheat. If instead participants receive
monetary remuneration, the motivation to cheat is greater
still. An adversary may be motivated to return incorrect
results if, for example, the adversary is a business competi-
tor of the supervisor’s £rm. Finally, malicious intent alone,
evidenced by the abundance of hackers and viruses propa-
gating throughout the Internet, is suffcient motivation for
an adversary to return incorrect results or to not return sig-
nifcant results.

Attacks that result from compromises of data in transit
are beyond the scope of this paper — we assume the in-
tegrity of such data is verifed by other means. In addition,.
we do not consider attacks that result from the compromise
of the supervisor or other trusted management nodes.

3. Vertical Partitioning

We assume that there are IV tasks that are to be assigned
to 2N participants. The idea behind vertical partitioning is
to divide each task into subtasks and then assign them to
participants such that

o Each subtask is assigned to exactly two participants.

Algorithm Task Assignment(N):
Input: The number N of tasks.
Output: Subtasks assigned to each participant

create subtask array containing the N(2N — 1)
subtasks (order is irrelevant)
10
create a complete graph G with 2N vertices
Do traverse G in breadth-£rst fashion
if edge e is encountered for £1st time
assign subtask[i] to e.vertices()
++1

Figure 2. Vertical partitioning task assign-
ment algorithm. The algorithm runs in O(n?)
time.

¢ Each participant shares exactly one subtask with each
of the other participants.

Since there are 2V participants, each can be paired with
2N — 1 other participants, so tasks must be divided into
2N — 1 subtasks. Moreover since the number of subtasks
in the computation, N (2N —~ 1), is the same as the number
of pairs of participants, such an assignment is always pos-
sible. An example assignment of 4 tasks to 8 participants is
shown in Table 1. The task assignment algorithm is given
in Figure 2.

There are two immediate consequences of assigning
tasks in this way. First, subtasking shrinks the checkable
unit of execution, which both reduces the burden of check-
ing individual returned results, and allows the verifcation
process to cover more of the computation. The result is that
the supervisor is given £ner control over which results are
verifed. The second is that it spreads the responsibility for
verifying the work of a single participant from one other
participant to all other participants. This distribution facili-
tates the effcient identifcation of all colluding parties once
a single colluding pair have been identifed.

The bene£cial effects of enhanced £rst factor should not
be discounted. Distributed computations that rely on re-
dundancy are vulnerable to collusion because matching re-
turned results are rarely verifed. The reason for this is cost:
for many applications, the only way for the supervisor to
verify a returned result is to recompute the entire task®. This
is expensive, and obviously cannot be done for any signif-

30f course they could assign the task to a third participant, but there is
no guarantee that this participant is honest. Moreover most computations
have little means of binding a username to an actual user, so there is no
guarantee that they have really assigned the task to a third party, much as
there is no guarantee that they assigned it redundantly in the £rst place.

Algorithm Adversary Search(Subtask Array):
Input: Subtask results for bad participant A.
Output: List of A’s malicious cohorts.

for each subtask result returned by A
if result returned by A and participant B
are incorrect and match
Add B to cohort list

Figure 3. Cohort Identi£cation Algorithm.

icant proportion of the tasks. Subtasking, however, allows
the supervisor to effectively check the work of N partici-
pants for the cost of verifying a single task. The improve-
ment in the probability of detecting malicious activity is the
results of this quantization effect. In essence, the supervi-
sor who uses simple redundancy is locked into performing
checks at the task granularity, which limits the effcacy of
the checking effort.

There is a subtlety here that is important for actual im-
plementations. Specifcally, it is not enough for the super-
visor of the computation to “think” of each task as broken
into subtasks. Rather, the participants need to know that
they are in fact performing several subtasks as opposed to a
single task, since then they are obliged to return signifcant
results from each subtask. In a computation in which tasks
search for an optimum value among all inputs, there is a big
difference, in terms of verifability, between returning the
input that is optimum over the entire task, and returning the
ten optimum inputs from each of ten subtasks.

Spreading the verifcation mechanism allows for easy
identi£cation of all colluding cohorts once a single pair has
been detected. The algorithm, shown in Figure 3 is straight-
forward, and requires at worst that the supervisor performs
an entire task worth of computation.

The supervisor can further reduce the cost of this oper-
ation by reassigning to these same participants a group of
subtasks, perhaps from some previous computation, whose
results are already known, thus eliminating the need to re-
compute the subtasks.

The distribution of checking, though bene£cial in many
ways, comes with both good and bad news—it simultane-
ously limits and increases the amount of damage that can
be inticted by an adversary who controls both copies of
some subtask. On the one hand, with simple redundancy,
the probability of getting a matching task is small, just

(—2]"1\77 = Tl—l’ but when this does occur, the entire task
2

is compromised. On the other hand, vertical partitioning
guarantees that an adversary with control of two participants
will control one subtask. They are thus assured that they can
compromise at least a fraction 55— of a task. Compromis-

ing an entire task, on the other hand, requires controlling
all 2N participants. We show however, in Section 4 that
the expected number of subtasks under control of the ad-
versary is identical in both simple redundancy and vertical
partitioning.

There are other costs associated with vertical partition-
ing, primarily stemming from the management of subtasks.
Subtasking introduces at least a factor 2N — 1 increase in
the cost of maintaining any task assignment database, since
tracking a subtask is every bit as expensive as tracking a full
task. For large IV values this will likely become prohibitive.
Handling the factor V increase in the number of returned -
sults will also pose diffculties, and is a problem that can not
always be easily handled by adjusting the criterion by which
results are deemed signifcant. Tuning applications so that
tasks return the appropriate number of signifcant results is
often diffcult, and involves more than simply narrowing the
£lter, since there is always the danger of creating a £lter so
small that important results will be missed. Subtasking only
exacerbates this tuning problem.

4. Analysis

We derive in this section several quantities related to the
potential for malicious activity in a distributed computation.
We show in particular that if an adversary controls a propor-
tion p of the 2N participants in the computation, then the
expected number of subtasks controlled under either strat-
egy is the same, and given by

E(#subtaskscompromis\ed) =pN(2pN -1). (1)

We derive as well the probabilities of detecting malicious
activity under the assumption that the adversary cheats on
any task or subtask they control. '

XXX

In much of the analysis we compare either numbers of
subtasks compromised or numbers of tasks compromised.
The former technically does not make sense in the case of
simple redundancy, where work can be compromised only
at task granularity. To be technically correct, we should use
a term like effective task or equivalent task. We decline to
do so because our meaning should be clear throughout.

can be compromised only in both simple redundancy and .

vertical partitioning schemes. In particular, we examine the
mean and the variance of the number

potential amount of damage that can be

lock at the mean and variance of the number of work
units that are controlled by the adversary.

We’re going to need to be extra precise with out language
here, since when talking about redundantly assigning tasks,
we need to be clear about the difference between the num-
ber of distinct tasks and the number of things assigned to

participants. Thus, I propose the following language: a
task is what is assigned to a participant. In simple redun-
dancy, there will be participants whose tasks are identical.
Both copies of these tasks will represent the same work unit.
Thus in what follows, if simple redundancy is used, we as-
sume that there are IV distinct work units that become 2NV
tasks.

We assume that a proportion p of the total assigned tasks
(i.e. of 2N) are under the contro! of an adversary. To make
the calculations a little more tractable, we assume that the
adversary controls an integral number of tasks (i.e. that
2pN is an integer).

4.1 Expected Number of Subtasks Under Adver-
sary Control

In this section, we examine the expected number of work
units that will end up being controlled by the adversary (i.e.
he or she has been assigned both tasks corresponding to this
work unit) under both simple redundancy and collusion-
resistant redundancy.

With collusion resistant redundancy, every two tasks
have one subtask in common. Thus an adversary contolling
2pN tasks will have both copies of (*5") = pN(2pN — 1)
subtasks.

With simple redundancy, the calculations are a bit more
involved. The Probability that the adversary will be as-
signed exactly k pairs of matching tasks is

P(exactly k matches) =
(N) 2pN—(k+1)
E RV S AN —i), @
N -)
(2‘; W) (2PN —2k)!

where we assume that the value of the right side prod-
uct is 1 if the bottom limit is greater than the top limit
(i.e. for k = pN, the probability of exactly & matches is
(p]XJ) / (22;71;[\/)). To justify (2) note that there are (}) ways
of choosing exactly k pairs from a total of N pairs. Once
the 2k tasks from the k pairs have been determined, there
are now 2N — 2k tasks left, so there are this many choices
for task 2k + 1. Once this task has been chosen, there are
2N — (2k + 1) tasks left, but one of them would match task
2k+1, so it cannot be chosen, leaving us with 2N — (2k+2)
choices for task number 2k + 2. Moving on to choosing the
next task (number 2k + 3) there are 2N — (2k + 2) tasks
left, but we cannot choose the two that match choices 2k + 1
and 2k + 2. Thus, there are 2N — (2k + 4) tasks that can
be chosen. Continuing in this way to determine the number
of ways of getting k matches leads to a product:

<JZ> (2N — 2k)(@N — 2(k + 1))(2N - 2(k +2)) ...

... (2N — 2(2pN — (k + 1))

This product, however, overcounts the number of ways of
£lling in the remaining cards, because any particular valid
combination is counted many times — once for each per-
mutation of the elements of the combination. Thus, we
need to divide by the number of such permutations, which
is (2pN — 2k)!. Thus, noting that there are (2, groups of
size 2pN from a group of size 2N, we see that the proba-
bility is

6
@7 nN — 20) (2N — 2k)(2N — 2(k + 1))...

.. (2N = 2(2pN — (k + 1)))].

Now, an adversary controlling 2pN tasks can control at
most pN work units. Also, the number k of matching pairs
must satisfy

k>2pN — N. 3)

To see this, note that after the k pairs of matching tasks (to-
talling 2k tasks) have been chosen, one must choose another
2pN — 2k tasks without getting a match. If at some point
the number of tasks remaining (i.e. unpicked) is less than
the number of unmatched tasks that have been chosen, then
by the pigeonhole principle (or some variant of it) we have
a problem (you can’t choose more than m/2 tasks from a
total of m tasks without getting at least one pair). Now, the
number of unpicked tasks is 2/V — 2pN, so we need to have
2N — 2pN > 2pN — 2k. A little algebra gives (3). Thus if
we let 7 = max{0,2pN — N}, then the expected number
of pairs of matching tasks is given by

1 pN E N 2pN—~(k+1) ‘
(zifyv);(zpzv-zk)!(k) gg 2AN =1 (&)

Interestingly enough regardless of which scheme is used,
the expected number of subtasks under the control of the
adversary is exactly the same. Specifcally, we claim that

pN(2pN - 1) =
aN-128 kP

AN —i) (5
&8 ;(%N—Zk)!(lc) Uk N=1) 6

for all values of p such that p/V is an integer. Note also the
2N ~ 1 term that changes the expected number of matching
tasks to the expected number of matching subtasks. Stated
another way, for a £xed nonnegative integer IV, and integer
L with 0 < L < N we seek to show that

L2L-1) =
N ~1 & k (N) 2L+ .
2(N —1), (6)
B k;(u—mc)! k 11

where here 7 = max{0,2L — N}. To see this, we £rst
reduce the product to a more manageable form. The product
contains 2L — (k + 1) — k + 1 = 2L — 2k factors, so we
have

2L~ (k+1)

II 2v-9=

i=k

=N —k)Y(N - (b +1))(N — (k+2))...
oo (N = (k+ (2L — 2k - 1)))

2N — k)N = (k+1))(N = (k+2))...
o (N+Ek=2L+1)

g2L-2k__(V —k)!
(N+k—2L)
Thus
2L—(k+1)
N Ny Q2L-2%
oUUN =) = o=
(k) 11 W-d=G@m+ri—my @
and we can rewrite (2):
P(exactly k matcnes) =
N! 1 22pN—2lc (8)
(2%) 2pN ~ 2k)1 KL (N + & — 2pN)!"

Substituting in (6), expanding the binomial coefEcient Ny
and moving some terms leaves the equation

(2N — 1)(2L){2N ~ 2L)IN!

@N)! ©

22L—2k

ot
£ (2L = 2k)1 Kl (N + & — 2L)!

=L(2L —1).

So, how do we prove this? Well, let the math God go to
work. First, note that by (2), (7), and the fact that the proba-
bilities over all nonegative & of receiving exactly k matches
must sum to one, we have, for each nonegative integer N,

integer L with 0 < L < N, and 77, y = max{0,2L — N}

L
1 = Z P(exactly k matches)
k=TL'N
i (N) 2L—(k+1)
k .
= S 2(N — 1)
2, Ees—z Ll
_ (2L)!(2N -2L)!
B (2N)!
L 2L—(k+1)
1 (N) H)
) AN — i)
Mgl (2L - 2k \ k s
_ (2L)Y(2N - 2L)IN!
N (2N)
L 1 1 22L—2k
ng (2L — 2k)! k! (N + k — 2L)!
or equivalently,
L 1 1 92L—2k
2. (2L —2k) K (N + k — 2L)!
k=TL,N
(2N)!

(2L)!(2N — 2L)INY’ (10)

Now, proving (9) is straightforward and trivial for N equal
to zero or one. So, assume N > 2. Using the values of
N —1land L — 1in(10) gives

= 1 1
e B

k=TpL_1,N-1

22(L-1)~2k
(N-1D+k-2(L-1)!
_ 2(N —1)!
(AL -1)N =1) —2(L - 1N = 1)!
B (2N - 2)! -
© (2L -2)Y(2N = 2L)(N - 1)U’ {an

Now, we wish to make the substitution &’ = k+1 in the left
side of (11). Doing this moves the upper limit in the sum
from L — 1 to L, and changes the bottom limit from

Te-1,N—1 = max{0,2(L—~1) - (N -1)}
= max{0,2L - N -1}

to max{1l,2L — N}. Once the substition is made, however,
itis easy to see that the &' equal zero term contributes noth-
Ing to the sum, so that we can replace max{1,2L— N} with

7, N. Making the substitution, then, gives
L-1

1 1
2 [(Q(L ~1) =2k k!

k=TpL_3,N-1

92(L-1)-2k
(N-1)+k—-2(L- 1))!]
L . .
) k':XTL: N [(2(L — 1) =2(k' = 1)) (K — 1)!
92(L—1)~2(k'-1)
(N—D+(F -1 —-2(L— 1)>!]
- K 1 92L—2k'
) k'=§~ (2L — 2k")! I (N + ¥ - 2L)!

This last expression is exactly the sum on the left side of
(9). Thus, combining this with (11) gives

(2N — 1)(2L){(2N —2L)!N!
2N)! x

L 92L—2k

k 1
k; (2L — 2k) KV (N + k — 2L)!

(2N — 1)(2L)!(2N — 2L)IN!
2N)] x
(2N - 2)!
(2L —2)I(2N — 2L)I(N — 1)1
(2N — 1)(2L)(2L — 1)N
ON(2N — 1)
= L(2L-1).

Summarizing what we have shown, for both distribution
schemes, the expected number of tasks and subtasks under
control of the adversary are given by

Expected # of subtasks = pN(2pN —-1) (12)
pN(2pN - 1)
E ted # —_
xpected # of tasks oN —1

This is a double-edged sword. On the one hand, it would
have been nice if the expected number of operations under
the control of the adversary was less under our scheme than
under simple redundancy. On the other hand, however, there
is this argument: Under simple redundancy, an adversary
who only controls the work units of two participants out of
2N has only probability

N 2

™ N-1
of receiving a matching pair of tasks, while under our un-

modifed scheme, the adversary is guaranteed to possess one

subtask that they completely control (i.e. can use to return
fake corroborated results). What the expected value result
says is that in fact in both schemes, the expected potential
for corruption is the same, though the granularity is larger
for simple redundancy (i.e. when they get matching tasks,
they can do more damage, but it’s harder to get more tasks).
Vertical paritioning also provides a beneft in terms of
stability, because the standard deviation of the number of
subtasks under control of an adversary is zero. This is cer-
tainly not the case in simply redundancy (unless the adver-
sary controls either all of the participants or none of them),
where the variance of the number of subtasks is given by

Var((# subtasks) = 13)
2pN?(2pN - 1)(1 - p)(2N(1 —p) - 1)
2N -3 ’

for values of p for which p/V is an integer. Note that if we
consider this as a function of the variables p and NV, then the
function is symmetric about the line p = 1/2. That is, if we
defne f by

flp,N) = (14
2pN?(2pN —1)(1 - p)(2N(1 ~p) - 1)
h 2N -3 ’

then f(p,N) = f(1 — p, N). (Similarly, the right side of

(25) is symmetric about the line L = N/2.)

Thus though the means are equal, in practice our scheme
provides greater stability—for a given proportion of partic-
ipants under the control of an adversary, there is a £xed
number of subtasks they will control (in the absence of any
verifcation or other enhancement).

4.2 Detecting Malicious Behavior

In the remainder of this subsection, we examine the prob-
abilities of detecting malicious activity assuming that the
adversary will attempt to return an invalid result if and only
if they have either both copies of a task (in simple redun-
dancy) or both copies of a subtask (in collusion resistant
redundancy).

We £rst look at simple redundancy, and specifcally at
the situation in which the supervisor attempts to detect
cheating by verifying (i.e. computing) a single entire work
unit. As before we assume that a proportion p of the 2V
participants are under the control of the adversary, that pV
is an integer value, which we denote by L, and that the 77, v
are defned as in Section 4. We can estimate the probabil-
ity of detecting the adversary under simple redundancy as
follows. By our earlier work, the expected number of tasks
under control of the adversary is L(2L—1)/(2N ~1). Since
the supervisor is choosing one task from randomly from N,

the probability of catching the cheater is

L(2L-1) 1 _ p(2pN —-1)
2N -1

2N-1 N

This is turns out to be the exact probability, as we now show.
Let A be the event that we detect them, and for i € [rp v, L]
let B; be the event that the adversary has been asigned ex-
actly ¢ pairs of matching tasks.

P(4)

L
> P(ABy)

k=TL,N

L
= > P(A|By)P(By)
k=1L N
L
k
= Y 7 F(Br)
k=1L N
_ L,
- N
1 22L—2k
Z (2L - 2k'k'(N+k 2L)!

k =TL N
L(2L‘— 1)
NeN -1

We now consider the analogous scenario under collusion
resistant redundancy, but assuming that some number k of
subtasks are verifed rather than a single task being verifed.
Here, we know the exact number of subtask pairs assigned
to the adversary: L(2L — 1). There are a total of N(2N —
1) distinct subtasks, so if we verify only a single randomly
chosen subtask, the probability that we detect the adversary
is (L(2L—1))/(N(2N —1)). Thus by doing only a fraction
1/(2N —1) of the work, we achieve the same probability of
detecting the adversary. If we instead verify k of the tasks,
then the probability of detecting the adversary is one minus
the probability that we fail to check any subtask that they
control:

(N(2N—1)—L(2L—1))

k

(")

1- (15)

We can get a lower bound for this quantity by noting that we
are choosing subtasks without replacement. If we choose
them with replacement, then the probability of choosing
only tasks that the adversary does not control increases, so
P(A) decreases. But selecting with replacement implies a
binomial distribution, and so we have

N(2N-1)-L(2L-1)

1- -
)

L(2L —1))’“
" NeN-1)/

1 ——r—rT7rr

sipiple redundancy
colluBi8n(resistant redundancy ---- -

06|/ .
04 [.

i
!

02t -

0
1020304050 60 70 80 90100
Number of work units

Probability adversary is detected

Figure 4. Graph showing the probability of de-
tecting a cheater by checking a single task
using simple redundancy versus checking an
equivalent number of subtasks (i.e. 2NV — 1
subtasks) under vertical partitioning. The
graph shown is for p = 0.25.

Equivalently,
pP(A) =
(N(2N-1)—pN(2pN—1))
= 1- k
(N(2N~1))
p(2pN —

v

(16)

(-2

Figure 4 compares the functions for several values of p and
N.

Let us generalize now to the situation in which simple re-
dundancy is employed, but now the supervisor verifes (i.e.
computes) mn full tasks rather than just one. In this case,
calculating the probability is a bit more involved, though
we can still make an intelligent estimate. Once again the
expected number of tasks under control of the adversary is
L(2L —1)/(2N —1). Now, however, the supervisor fails to
catch the adversary only if all m of the tasks they select are
not under the control of the adversary. There are expected
to be

2N -1

L(2L - 1)

N-=§-1

of these. Thus the estimated probability of catching the ad-
versary is

(V-

2N -1

Y

Of course the exact probability of catching the adversary

10

is given by
L
P(4) =) P(ABy)
k=tL.Nn
L
= Y P(A|By)P(By)
k=11 N
‘ L (N—k)
- 2 (-G e
k=1L N m

= 1- ék:ém (N‘k>P(Bk)
-2 00

N! }_ 92L-2k
(2NY(2L — 2k)1 kY (N + k — 2L)!

N L I/N-k
= Ee.E ()
1 1 22L——2k
(2L - 2k)E(N+k—2L)!]
(N=m)! <~ [(N=k)!
T kﬂz;‘w[(fv—k—m)!x
1 1 92L -2k
(2L—2k)!E(N+k-2L)1]

In addition to the increased probability of detecting an
adversary, collusion resistant redudancy also provides a
means for identifying many of the participants under the
control of the adversary, because of the way the subtasks
are spread throughout the 2.V participants. If, in addition,
we assume that the adversary adversary returns matching
bad results whenever she controls a matching subtask, then
all participants under the control of the adversary can be
identifed. The algorithm is as follows. First, whenever a
bad result has been detected, the supervisor begins check-
ing all other subtasks assigned to that adversary. Whenever
a pair of matching bad results have been returned, the other
participant who verifed the result is then added to the list of
adversarial participants, and all of their results are checked
and so on. The number of checks required here is dependent
on the proportion p of malicious participants, and is given
by (£gure this out).

For myself: looks like we will want some kind of list
that we add new adversaries to. And we just keep checking

subtasks for everything on the list until we have exhausted
the list. We should run a sim and see how long this takes.

Of course there is then the question of what do you do
with these participants once you know that they are bad. If
you can blacklist, great, but you really can’t.

Should also have a graph that does something like this:
it looks at how many tasks have to be checked under simple
redundancy in order to get a probability greater than 1/2 that
the cheater will be detected (for a given p). Compare these
amounts to the number of subtasks that need to be checked,
and see what the total work difference is.

5 Clusters: Applying Collusion Resistance in
Practice

Real distributed metacomputation can consist of millions
of work units distributed to millions of participants. Cer-
tainly, our scheme as described thus far is not practical at
these orders of magnitude, nor is it practical at values of N
greater than around 50, since as mentioned earlier, book-
keeping costs can be signifcantly increased at higher N
values. Using this scheme in practice thus requires break-
ing the computation into several clusters, each of which
consists of a reasonable sized number of work units. To
keep our notation as consistent with the previous sections
as possible, we will assume for the remainder, that the en-
tire metacomputation consists of M work units. These are
to be distributed to 2M participants (though these need not
be 2M distinct participants). The M work units are to be di-
vided into C clusters each containing N work units. Thus,
C = M/N. The N work units in each cluster are to be
distributed to 2NV participants according to the vertical par-
titioning method.

Clustering has several advantages over pure vertical par-
titioning. First, unlike vertical partitioning, an adversary
controlling multiple participants is no longer guaranteed to
possess duplicates of any particular subtask, since tasks in
different clusters are disjoint. There are also overhead ad-
vantages, since relatively low NN values lead to decreased
bookkeeping as compared to vertical partitioning. Most im-
portant, the notion of clustering provides the supervisor of
a computation with signifcant dexibility — by varying the
parameters N and C the entire spectrum from simple re-
dundancy (clustering with N = 1 and C = M) to vertical
partitioning (V = M and C = 1) can be covered.

We examine here how the introduction of clustering af-
fects several of the probabilistic quantities previously con-
sidered. Determining closed form solutions for many of
these quantities appears to be an intractible problem. Never-
theless, we have obtained exact expressions for these prob-
abilities that allow them to be computed accurately.

We £rst consider the expected number of tasks under the
control of the adversary if the computation uses a cluster-

11

ing scheme. Once again we assume that the adversary con-
trols proportion p of the 20 participants in the computa-
tion, for a total of 2pM participants. Let {Cy, Cs,...,C¢}
denote the clustérs. We.use vectors to describe specifc as-
signments of participants to the adversary, with

v‘_’(klyk%""kC)

denoting the event that the adversary has been assigned ex-
actly k; participants in cluster C;. Such an assignment must
of course always satisfy E;C=1 k; = 2pM. We defne the
subtask function, T'(v) of an assignment vector v, to be the
number of subtasks controlled (i.e. the adversary has both
copies of the subtasks) by the adversary given the partici-
pant assignment v. Equivalently,

3.(5)

i=1

a7n

where we assume that the binomial coefEcient evaluates to
zero if k; < 2. Let £ denote the set of all possible assign-
ment vectors (which is of course determined by the values
of p,C, N,andM)and for0 < i < M(2N — 1), let E; be
the set of vectors de£ned by

E; = {v|T(v) =i}.

Finally, let S; denote the event that the adversary controls
exactly ¢ subtasks, and let P(v) denote the probability that
the adversary receives a task assignment corresponding to
vector v. Then we have that the expected number of sub-
tasks under control of an adversary with 2pM participants
is given by

pM(2N-1)
E(# of subtasks) = Z iP(S;)
i=0
pM(2N-1)
= Z i Z P(v)
=0 veE;
=) PW)T(v).
veE

Determining the probability P(v) of the adversary re-
ceiving the assignment corresponding to v is straightfor-
ward. There are (2,::’) ways of receiving k; participants from
the 2NN participants in cluster C;, and there are a total of
(2M) groups of size 2pM participants that can be chosen

2pM
2N
k;

from a group of size 2M. Thus

1
a1l

i=1

P(v)=

(18)

Table 2. Task division and assignment for simple redundancy, clustering, and vertical partitioning.
Assignments shown for M = 4 participants. The clustering example uses C = 2.

Simple Redundancy (M =4, N =1, C = 4)

Tasks Participants
1 2 31 4 1 21314145 6 | 7 8
A0 | BO | CO | DO A0 | AO|BO | BO | CO|CO|DO|DO
Clustering (M =4, N =2,C = 2)
Tasks Participants
1 2 3 4 1 2 3 415 6 7 8
A0 | BO | CO | DO A0 | A0 Al [A2|CO|(CO[CI|C2
Al | Bl | C1 | D1 Al [BO|BO{Bl|Cl|DO|DO|DI
A2 | B2 |C2|D2 A2 | Bl |B2|B2|C2|Dl|D2;|D2
Vertical Partitioning (M =4, N =4,C =1)
Tasks Participants
1 2 3 4 1 2 3 4 5 6 7 8
A0 | BO | CO | DO A0 | A0 | A1 | A2 | A3 | A4 | AS | A6
Al | Bl | C1 | D1 Al | BO | BO | Bl | B2 | B3 | B4 | BS
A2 | B2 [C2 | D2 A2 | Bl |B6 | B6|CO|Cl|C2|C3
A3 | B3 [C3 | D3 A3 | B2 C0O | C4|C4|C5](C6|DO
A4 | B4 | C4 | D4 A4 | B3 |(Cl | C5|Dl|Dl|D2]|D3
A5 | B5 | Cs5| D5 A5 B4 [C2C6D2)|D4|D4]D5
A6 | B6 | C6 | D6 A6 | B5(C3 D0 D3 |D5|D6] D6
and We look next at the probability of detecting an adversary
who controls a single subtask, given that the supervisor ver-
E(# of subtasks) = 19) ifes m subtasks. Let S; once again denote the event that
1 2N k; the adversary controls 7 subtasks, and let A be the event that
(2M) Z H (k;) Z (2) their behavior is detected. Then
2pM /) v=(ky,....kc)€EE i=1 j=1
Equivalently, PM@N-1)
4 4 P(4) = Y. P(AS)
E(# of tasks) = (2v) i=1
1 1 C N % k; pM(2N-1)
2N —1(2M5 > H<k1)2<2) = Y. PAIS)P(S)
2pM/ v=(k;,....kc)€E i=1 j=1 i=1
pM(2N-1)

There are several special cases of input parameters (e.g.
p=(2pM —1)/(2M — 1)) for which one can easily calcu-
late the value in (20). In each case, the value is identical to
the values obtained for both pure vertical partitioning and
simple redundancy. Moreover, we have computed several
values for nontrivial parameter settings, and again in each
case the expected number of tasks in all three scenarios is
identical. We thus conjecture, but have not yet been able to
prove, that (2?) is in fact equal to the expected values for
simple and vertical partitioning regardless of the value of

12

(A1S:) >~ P(v)

veE;

> p
i=1

Now, the supervisor will detect the adversary only if they
verify one of the subtasks controlled by the adversary. Since
there are a total of M (2N — 1) subtasks in the computation,
using the probability of the complement gives

(M(2N—1)—i)

P(A|S:)=1- W({FVT))

Thus
pM(2N -1)
P(A) = Y PAS) Y Pv)
i=1 veE;
= Y P(V)P(A|Szq))
veEg
. (M(2N—1)—T(v))
= Y P(v) (““WN——U“") @1)
vegl (m)

Figure whatever compares this probability for the three
schemes. In each case, we assume that the adversary hes
been assigned exactly two participants and in a manner most
favorable for disruption. That is, in the data for simple re-
dundancy, we assume that the adversary has been assigned
identical work units and in clustering we assume that the
two assigned participants are in the same cluster. In each
case we assume that one equivalent task is verifed by the
supervisor, so in pure vertical partitioning, 2M -~ 1 sub-
tasks are verifed, while in clustering 2N — 1 subtasks are
verifed. As expected, the probability for clustering falls
between that for vertical partitioning and that for clustering,
with the curve corresponding to increased C values mov-
ing toward the simple redundancy curve, and decreased C
values moving toward the vertical paritioning curve.

Our £ndings are summarized in the following table. We
assume as above that there are a total of M work units in
the computation, and there are 2M participants. We divide
the M participants into C clusters, each containing N work
units and 2NV participants, so C = M/N. We let

5.1 Augementing Our Strategy With Other
Schemes

OK, so what augmented things are we talking about:
First, varying the lengths of the subtasks. Second, using
ringers (note that you have similar problems here if input
have a specifc order, since then the ringers can be recog-
nized). The idea again is to make it impossible for the ad-
versary to determine whether operations assigned to multi-
ple tasks are ringers or not.

We also want to talk about doing this in a less than full re-
dundancy style. That is, use a hybrid combination of ringers
and this £ner grained redundancy.

6. Related work

The present problem relates to the validation of code
execution, so its historical roots lie in the areas of result-
checking and self-correcting programs. Wasserman and
Blum [20] provide an excellent survey of the results in this
area. While of theoretical interest, it is not directly appli-
cable here because much of the work is limited to specifc

arithmetic functions, and checking is limited to verifying
function behavior on a single input, rather than on all inputs.
Result checkers for general computations remain elusive.

Several recent implementations of distributed computing
platforms address the general issues of fault-tolerance [2, 3,
4, 5, 11, 15], but assume a fault model in which errors that
occur are not the result of malicious intent. The solutions
presented are typically a combination of redundancy with
voting and spot checking. In a preliminary investigation of
the problem of fault-tolerant distributed computing, Minsky
et al. [9] found that replication and voting schemes alone
are not suffcient for solving the problem. They assert that
cryptographic ‘support is required as well, but only sketch
the methods they envision for solving this.

There have been a number of efforts aimed at protecting
mobile agents from malicious hosts. Vigna [19] proposes
using cryptographic traces to detect tampering with agents.
Specifcally, an untrusted host that is providing the execu-
tion environment for a mobile agent is required to generate,
and for a short while store, a trace of the agent execution.
Upon completion of the execution, the untrusted host re-
turns a hash of the trace, and if requested by the originating
host, the complete trace. This of course means that verifca-
tion of the correct execution is provided by having the code
executed twice, once on the trusted node, and once on the
untrusted node. In addition, as Vigna notes, even if traces
are compressed, they can be huge. While there are mech-
anisms that can be used to decrease the size of traces, the
communication overhead remains far too great to be practi-
cal for a metacomputation.

Sanders and Tschudin [13] discuss the idea of provid-
ing security for mobile agents by computing with encrypted
functions [1, 12]. The idea is to use an encryption function
E to encrypt the code for a procedure P, obtaining a sec-
ond function E(P) that provides little information about P.
An untrusted second party then executes E(P) on a given
input = and returns the result, which is then decrypted to
obtain P(z). The diffculty here lies in creating encryp-
tion functions that map executable procedures to executable
procedures. There are other requirements for F, including
resistance to chosen plaintext attacks, ciphertext only at-
tacks, and other attacks. Abadi and Feigenbaum [1] present
an encryption function for a general boplean circuit, but
their method requires a great deal of interaction between
the communicating parties. Sanders and Tschudin add the
constraint that the encryption function should not be inter-
active, since frequent communication between an agent and
the server from which it originated effectively eliminates
the benefts gained from agent autonomy. The methods they
present apply to procedures that evaluate restricted classes
of polynomials and rational functions. Because no methods
are presented for more general procedures, however, and
because it is not even known whether such encryption func-

Table 3. Summary of results

Quantity Simple Redundancy Clusters Vertical Partitioning Summary
rows in matrix 1 2N -1 2M -1 SR<CLSTR<VP
P(adversary cheats) 0T 2=l 1 SR<CLSTR<VP
tasks compromised 1 B P SR<CLSTR<VP
Expected # tasks compromised pHfiepM 1) MM 1) ZUCIE) SR =CLSTR=VP
P(adv. detected) SR<CLSTR<VP

tions exist, their methods, though interesting, present prac
tical diffculties.

In addition to the work of Golle and Mironov [7], two
other works focus specifcally on the issue of securing
distributed metacomputations. Golle and Stubblebine [8]
present a security based administrative framework for com-
mercial distributed computations. Their method, like those
presented here, relies on selective redundancy to increase
the probability that a cheater is detected. They provide
increased zexibility, however, by varying the distributions
that dictate the application of redundancy. Effcacy is mea-
sured by £rst developing a game theoretic model based on
estimates of the participant’s utility of disrupting the com-
putation and cost of being caught defecting, and then deter-
mining distribution parameters that guarantee that, for every
participant involved, the expected value of defecting from
the computation is less than or equal to zero. The differ-
ences between their methods and those presented here lie in
the particulars of how redundancy is applied and with the
granularity of redundancy.

Monrose, Wyckoff, and Rubin [10] deal with the prob-
lem of guaranteeing that a host participates in the compu-
tation, assuming that their goal is to maximize their pro£t
by minimizing resources. The method involves recording
traces of task execution. Specifcally, task code is instru-
mented at compile-time so that it produces checkable state
points that constitute a proof of execution. On completion
of the task, the participant sends results and the proof to
a verifer, which then runs a portion of the execution and
checks it against the returned state checkpoints. However,
this approach requires the undesirable need to recorpute
results.

Szajda, Lawson, and Owen [17] present two general
schemes for using probabilistically applied redundancy to
give applications greater resistance to cheating. They di-
vide applications into two broad classes: non-sequential,
in which tasks consist of independent operations; and se-
quential, in which the operations that constitute an individ-
ual task can have dependencies and must be executed in a
specifc order. Their technique for non-sequential applica-
tions is essentially an extension of the Golle and Mironov
ringer scheme to more general functions. They handle se-

14

quential applications by breaking computations into several
stages, assigning [V tasks to X' > N participants, and using
probabilistic verifcation. Some application and platform
specifcs are mentioned, though only brietty and only in the
context of applicability of their methods. They mention the
possibility of colluding adversaries but assume that this oc-
curs with low probability.

Sarmenta [14] proposes a credlblhty-based system in
which multiple levels of redundancy are used, with param-
eters determined by a combination of security needs and
participant reputations. Sarmenta notes that ??, blacklisting
of participants is not possible in most distributed compu-
tations. Application and platform implementation specifcs
are not discussed. Collusion is considered during analysis
of his system, but as in [17], the probability is assumed to
be low.

7. Conclusions

References

[1] M. Abadi and J. Feigenbaum. Secure circuit evaluation: A
protocol based on hiding information from an oracle. Jour-
nal of Cryptology, 2(1):1-12, 1990.

[2] J. Baldeschwieler, R. Blumofe, and E. Brewer. Atlas: An
infrastructure for global computing. In Proceedings of the
Seventh ACM SIGOPS European Workshop on System Sup-
port for Worldwide Applications, 1996, :

[3] A. Baratloo, M. Karaul, Z. M. Kedem, and P. Wyckoff.
Charlotte: Metacomputing on the web. In Proc. of the 9th
Int’l Conf. on Parallel and Distributed Computing Systems
(PDCS-96), 1996.

[4] T. Brecht, H. Sandhu, M. Shan, and J. Talbot. Paraweb: To-
wards world-wide supercomputing. In Proceedings of the
Seventh ACM SIGOPS European Workshop on System Sup-
port for Worldwide Applications, 1996.

[5] P. Capello, B. Christiansen, M. Ionescu, M. Neary,

* K. Schauser, and D. Wu. Javelin: Internet-based parallel
computing using Java. Concurrency: Practice and Experi-
ence, 9(11):1139-1160, 1997.

[6] The Folding@home Project. Stanford University.
http://www.stanford.edu/group/pandegroup/cosm/.

[7] P. Golle and I. Mironov. Uncheatable distributed computa-
tions. In Proceedings of the RSA Conference 2001, Cryptog-

raphers’ Track, pages 425—441, San Francisco, CA, 2001.
Springer.
P. Golle and S. Stubblebine. Secure distributed computing
in a commercial environment. 2001.
http://crypto.stanford.edu/~pgolle/papers/payout.html.
Y. Minsky, R. van Renesse, F. Schneider, and S. Stoller.
Cryptographic support for fault-tolerant distributed comput-
ing. In Seventh ACM SIGOPS European Workshop, pages
109-114, Connemara, Ireland, 1996.
F. Monrose, P. Wyckoff, and A. Rubin. Distributed execu-
tion with remote audit. In Proceedings of the 1999 ISOC
Network and Distributed System Security Symposium, pages
103-113, 1999.
N. Nisan, S. London, O. Regev, and N. Camiel. Glob-
ally distributed computing over the internet—the Popcorn
project. In Proceedings of the International Conference on
Distributed Computing Systems, pages 592-601, Amster-
dam, Netherlands, May 1998.
R. Rivest, L. Adleman, and M. Dertouzos. On data banks
and pﬁvacy homomorphisms. In R. D. Millo, D. Dobkin,
A. Jones, and R. Lipton, editors, Foundations of Secure
Computation, pages 169—179. Academic Press, New York,
1978.
T. Sander and C. F. Tschudin. Protecting Mobile Agents
Against Malicious Hosts. In G. Vigna, editor, Mobile Agent
Security, pages 44-60. Springer-Verlag: Heidelberg, Ger-
many, 1998.
L. Sarmenta. Sabotage-tolerance mechanisms for volunteer
computing systems. In Proceedings of the ACM/IEEE In-
ternational Symposium on Cluster Computing and the Grid,
Brisbane, Australia, May 2001.
L. Sarmenta and S. Hirano. Bayanihan: Building and study-
ing web-based volunteer computing systems using java. Fu-
ture Generation Computer Systems, 15(5/6), 1999.
[16] The Search for Extraterrestrial Intelligence project. Univer-
sity of California, Berkeley.
http://setiathome.berkeley.edw/.
D. Szajda, B. Lawson, and J. Owen. Hardening functions
for large-scale distributed computations. In Proceedings of
the 2003 IEEE Symposium on Security and Privacy, pages
216-224, Berkeley, CA, May 2003.
D. Szajda, B. Lawson, J. Owen, and E. Kenney. Issues in
securing larg-scale distributed computations. Submitted to
Proceedings of the 2004 ISOC Network and Distributed Sys-
tem Security Symposium.
G. Vigna. Cryptographic Traces for Mobile Agents. In
G. Vigna, editor, Mobile Agent Security, pages 137-153.
Springer-Verlag: Heidelberg, Germany, 1998.
[20] H. Wasserman and M. Blum. Software reliability via run-
time result-checking. Journal of the ACM, 44(6):826-849,
1997.

8

—

&)

—

[10]

(1

{12]

(13]

(14]

(13]

{17

[18]

[19]

A. The Variance of the number of tasks con-
trolled by an adversary in simple redun-
dancy

Collusion resistant redundancy provides a beneft in
terms of stability, because the standard deviation of the

15

number of subtasks under control of an adversary is zero.
This is certainly not the case in simply redundancy (un-
less the adversary controls either all of the participants or
none of them). In this section we derive the variance of the
number of subtasks under the control of the adversary using
simple redundancy.

Following the work done in the previous section, if we let
X be the random variable that describes the number of pairs
of tasks (not subtasks) under the control of the adversary,
then E(X?) is given by

E(X?) =
1 L k2 N 2L~(k+1) .
(32) kz:; (2L - 2k)!v<k> Bc 2(N —4). (22)

We £nd a closed form for this using a method similar to
what was used in the previous section—taking a known re-
lation, in this case equation (9), and using the values L — 1
and N — 1 instead of L and N, and then making the sub-
stition of (k' = k + 1 in the index of summation . This
gives

= [k 1
(2(L - 1) - 2k)! k!

92(L-1)~2k
(N-1)+k—-2(L- 1))!]
k-1 1

L
kgm [(2(L D -2(k— 1) (k= 1!
' 92(L—1)-2(k—1)
(N-1)+(k~-1)-2(L~- 1))!}
S k-1 1 9212
2. (2L = 2k)! (k —1)! (N + k — 2L)!

k=1~

Z

k=Tp_1,N-1

1 22L—2k
L= 2k) (k- 1)1 (N+ k — 2L)!
L

1 22L—2k
2 2L —2k)! (k- 1) (N + k= 2L)!

k=T N

>

k=7 N

k2 1 - 22L—2k

(2L — 2k)! k! (N + k — 2L)!

L k 1 92L-2k
D (2L - 2k) k! (N + k — 2L)!

k=1L N

Thus,

1 22L —2k
(2L 2k) B (N + k — 2L)!

= k 1
2. [(2(L —1) —2K) k!

k=tp_1,N-1
92(L~1)~2k
- 1))!}
1 22L —2k

(v = 1) fk— 2(
L @L= 2k)’ K (N¥k-2L)

+ Z
k=rr,
(L - 1)(2(L —-1)-1)
[(2(1\' —1)-DEEL -
(2(N = 1))!
=

—1)—2(L - D))(N
L(2L — 1)(2N)!
(2N —1)(2L)I(2N — 2L)INT
(L - 1)(2L - 3)(2N — 2)!
(2N = 3)(2L — 2)!(2N — 2L)i(N — 1)
L(2L ~ 1)(2N)!
(2N = 1)(2L)I(2N — 2L)IN!

>

k=1L,N

(2N

(23)

Given this closed form solution for the sum, we have

E(X? =
1 & &2 N
2N Z(2L—2k!(k)
1 k2 Nt
& Z(2L 2k K (N + k — 2L)!

(2L){2N — 2L)IN!
(2N)!

2L~ (k+1)

1T 2w

i=k
22L -2k

—i).

L k2 1 92L-2k
k; (2L = 2k) k! (N + k — 2L)!

(L){2N —2L)IN!
(2N)!
(L —1)(2L - 3)(2N ~ 2)!
[(2N —3)(2L - 2)I(2N — 2L)}(N
L(2L — 1)(2N)!
(2N = D)(2D)I(2N — 2L)IN!
L(2L — 1)(L ~ 1)(2L —3) . L(2L—1)
(2N — 1)(2N — 3) (N -1)
L(2L — 1)(2L? - 5L + 2N)
(2N —1)(2N —3)

1)

24

16

It follows that

var(X) = E(X?) - (E(X))? =
L(2L —1)(2L? —5L +2N) L*(2L —1)?
(2N —1)(2N < 3) T T(eN-1)2

so that the variance of the number of subtasks under the
control of the adversary is given by

Var((2N — 1) X) = (2N — 1)? Var(X)
L(2L —1)(2L% - 5L + 2N)(2N — 1)
2N -3
- L*(2L -1)%

With a little algebra, this can be reduced to

Var((2N — 1)X) = (25)
2L(2L ~ 1)(N ~ L)(N ~L) - 1)

2N -3

Replacing L with the value p/V, we have, for values of p for
which p/V is an integer,

Var((2N - 1)X) =

2pN?(2pN ~1)(1 —p)(2N(1 —p) - 1)
2N —3 '

(26)

Note that if we consider this as a function of the variables
pand N, then the function is symmetric about the line p =
1/2. That is, if we defne f by

flo, N) = @7
2pN2(2pN ~ 1)(1 - p)(2N(1 —p) — 1)
2N -3)
then f(p, N) = f(1 — p, N). (Similarly, the right side of

(25) is symmetric about the line L = N/2.)

Thus though the means are equal, in practice our scheme
provides greater stability—for a given proportion of partic-
ipants under the control of an adversary, there is a £xed
number of subtasks they will control (in the absence of any
verifcation or other enhancement).

	University of Richmond
	UR Scholarship Repository
	4-7-2004

	Securing distributed computations : in search of reliable large-scale compute power and refreshed redundancy
	Edward P. Kenney
	Recommended Citation

	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49
	Page 50
	Page 51
	Page 52
	Page 53
	Page 54
	Page 55
	Page 56
	Page 57
	Page 58
	Page 59
	Page 60
	Page 61
	Page 62
	Page 63

